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Abstract

Linearized full information rational expectations heterogeneous agent models can be easily con-
verted into a sticky expectations environment, even when solved in state-space form. The technique
recycles the Jacobians of the full information model with only a few modifications. The process
is greatly simplified by working in continuous time, which facilitates the use of natural boundary
conditions to ensure agents do not violate idiosyncratic borrowing constraints and the measure
of updating agents at any given moment is zero. After solving the full information model, the

conversion to sticky expectations requires only very straightforward matrix manipulation.

1 Introduction

Departing from full information rational expectations (FIRE) substantially alters model dynamics and
is often necessary to reconcile heterogeneous agent New Keynesian (HANK) models with aggregate and
microeconomic evidence. In this supplemental paper to Kwicklis (2025b), I develop a new technique
to expediently convert the linearized state-space Jacobians of a full information HANK continuous
time system into their sticky expectation counterparts, wherein only a fraction of agents update their
beliefs about the macroeconomy to full information at any moment in time. Kwicklis (2025b) then
demonstrates an empirical application of the procedure.

Several factors allow my numerical method to offer an expedient solution by recycling FIRE Ja-
cobians. First, the machinery of continuous time naturally handles the interior and boundary of the
state-space separately via partial differential equations (PDEs) and their accompanying boundary
conditions, which ensure that agents do not violate borrowing constraints and similar restrictions.
Second, as explained in Guerreiro (2023), only the average beliefs of the households in the standard
sticky information setting matter for aggregate allocations.

As such, my first step is to solve the linearized problem for a household with average beliefs about
the macroeconomy, given that the average household treats its beliefs (to first order) as the true
future when calculating its value function and forming its plan for its control variables. Additionally,
in continuous time, only a vanishing measure of households update their beliefs to full information in
any given moment, so updates only lead the average belief (and the average behavior it induces) to
drift, not jump. Information updates can therefore be incorporated entirely as additive drift terms.
Lastly, the average belief value function can be parsimoniously updated using the value functions
of full information households, as both solve the same partial equilibrium decision problem, just for

different (incorrect and correct) sequences of forecasted prices.
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I briefly survey related work on HANK models and departures from FIRE in the literature review.
In Section 2, I describe the layout of a broad class of sticky expectation HANK models and the
mathematical arguments that justify my solution technique. In Section 3, I detail the simple matrix
manipulation that implements my methodology. In Section 4, I show that my strategy yields the
correct analytical solution for a simple representative agent New Keynesian model that can be solved
via pen-and-paper, and that my state-space numerical solution matches the sequence-space approach
described in Auclert, Rognlie, and Straub (2020) for a canonical HANK model. Section 5 concludes.

1.1 Literature Review

Several approaches for handling non-FIRE HANK models already exist in the literature, but my
methodology offers a flexible and powerful alternative to existing methods. In a seminal paper that
merges HANK with sticky expectations, Carroll et al. (2020) use a Krusell and Smith (1998) approach
to solve a simple state-space HANK model by tracking the entire distribution of infrequently-updating
household expectations. They then demonstrate that their simulated model replicates the empirically
observed sluggish response of household consumption to macroeconomic events. However, the authors
deliberately keep their model simple due to the computational complexity and rely on specific para-
metric forms for the utility function and the budget constraint, which my approach does not require.
In contrast, I make full use of the fact that only average beliefs matter for economic dynamics when
information updating is orthogonal to the idiosyncratic state space, a point established in Guerreiro
(2023). This methodology is then used in Kwicklis (2025b) to solve a sticky expectations HANK
framework with a search-and-matching labor market and the full set of Smets and Wouters (2007)
frictions.

Auclert, Rognlie, and Straub (2020) demonstrate how to conduct a similarly convenient conver-
sion from FIRE to sticky expectations using the sequence-space Jacobian (SSJ) approach of Auclert,
Bardéczy, et al. (2021), along with the importance of sticky expectations for reconciling HANK mod-
els with macro and micro data. Like my conversion, their technique also requires only a few small
changes to the computation. In Section 3, I provide a numerical example of a canonical HANK model
solved with sticky expectations in both my state-space form and in a continuous time variation of
their sequence-space methodology. Both approaches generate similar impulse response functions up
to a reasonable approximation error. However, while the SSJ framework is a powerful tool, some ap-
plications may still be more easily handled in state-space: higher-order perturbation approximations,
regime-switching models, shock filtering, missing data and measurement error handling during estima-
tion, and more are for the time being still more straightforward to enact in state space.?> My approach

is therefore able to bridge the gap between the information frictions literature and the growing full

3 Additionally, determinacy and uniqueness of a stationary solution can be difficult to assess in sequence-space, but are
more straightforward to assess with the Blanchard and Kahn (1980) methodology in state-space. Most sequence-space
determinacy checks involve the use of Onatski (2006) winding criteria and the approximation of the solution with a state-
space model. Auclert, Rognlie, and Straub (2023) use the quasi-Toeplitz structure as of the sequence-space Jacobians to
approximate their model after a large number of time periods to assess determinacy. Hagedorn (2023) assumes households
decisions only depend on aggregate states instead of the full distribution, making the dimension-reduced sequence-space
model exactly Toeplitz. However, neither approach directly evaluates the stationarity of the model of interest — only a
distant future or dimension reduced approximation.



information numerical state-space HANK work of Bayer, Born, and Luetticke (2024), Bayer, Born,
and Luetticke (2024), Acharya et al. (2023), and others.

The methodology in this paper naturally builds off of previous work on solving FIRE state-space
HANK models. In my HANK numerical example, I repeatedly employ a continuous time analogue
of the approach used in Bayer and Luetticke (2020) to solve for the systems’ FIRE Jacobians. Their
approach — based on Reiter (2009) — reduces the dimensionality of the heterogeneous agent problem
using a discrete cosine transformation for the households’ value function and a copula for the dis-
tribution of households. Ahn et al. (2018) is also relevant, as it explains perturbation solutions in
continuous time HANK models more broadly.*

In the numerical HANK example, T also draw upon the continuous time tools of Achdou et al.
(2021) to calculate the model’s non-stochastic steady-state. The model itself is a variation of the one
solved in Kwicklis (2025a), but under an active monetary /passive fiscal policy mix, as is conventional

in the New Keynesian literature.

2 Converting FIRE models to Sticky Expections

In what follows, I describe a general HANK model in which households know their own idiosyncratic
variables but imperfectly forecast the macroeconomic variables that go into their decision problems.
I start by introducing the households’ perceived problem given their beliefs and a general set of
equilibrium conditions. I then describe the behavior of households in the interior of the idiosyncratic
state space, which are governed by differential equations. Separately, I describe the behavior of
households on the boundary, for whom constraints hold exactly. I then introduce a household with
average beliefs as a device to characterize the evolution of the economy. After solving this problem, I
describe households who have updated to full information, and how these full information households

can be used to update the average-expectation system.

2.1 Setup

Time is ¢ > 0 is continuous. Households are ex-post heterogeneous and know the vector of their
idiosyncratic state variables x; € X with full information. These state variables are assumed to evolve

via a standard stochastic differential equation with the law of motion
dxy = f (21, ¢, pr)dt + oz (x)dWy

where ¢; is the vector of the household’s choice of controls, p; is a vector of macroeconomic variables
outside of the individual household’s control (like prices or inflation), f is the law of motion governing

the state variable’s deterministic drift, and o, (x) is a diagonal matrix through which an independent

4Researchers interested in estimating continuous time models from discretely sampled data should further consult
Christensen, Neri, and Parra-Alvarez (2024), which provides a guide for properly integrating continuous time equations
to discretized measurements of stocks and flows.



vector of Brownian motions W feeds back into the state equations.” Note that f is itself vector-valued;
if f; depends on ¢, then the coordinate x; is an endogenous idiosyncratic state variable. If not, then
x; is an exogenous idiosyncratic state variable.

In addition, I assume that idiosyncratic dynamics must satisfy a boundary condition along at least
one of its dimensions:

Tjt > .

For simplicity, I assume that o, ; () = 0 if z;; = z, such that endogenous idiosyncratic states with
a boundary constraint do not evolve with a stochastic diffusion term on the boundary 0X.
Households plan to choose control variables to maximize their expected discounted utility. In
contrast to full information rational expectations, however, the household uses its beliefs (indexed by
i € Z with CDF T'(i)) about the macroeconomy to forecast the macroeconomy’s evolution and its

impact on its decision problem, which may or may not be correct. The perceived problem is:

Vi pe pesphopf) = max / e T Pu(e,)dr
(CZT(mT’an“‘T))‘rzt t
s.t. Eildry|dWy) = Ei[f (x4, c; pe)dt] + op(z)dWr,
Eé [@;ut] = Ezz: [D?(Va P) [Mt](l")] (1)
E; [dp ] i
o B = Eilg(u, po)]

Tj >z Vt >0

where D*(V, p) is the true infinitessimal generator for the Kolmogorov Forward equation (KFE) of the
distribution u, while g is the true law of motion for aggregates p. E’ is the expectation taken with the
subjective probability measure of a household with belief ¢ at time ¢. Here, p! = Ei[p,] and pi = Ei[u]

Although households may have incorrect beliefs about the trajectory of prices, they only use those
incorrect beliefs for forecasting and constructing their value function V;'. For the first-order conditions
that arise from their decision problem in the interior X' \ 90X, I assume households plug the actual p;

into their choices at time ¢, such that
Cé(l‘) = h(ZL‘, ‘/ti?pt)'

These consumption choices and contemporaneous prices are assumed to have no impact on the house-
hold’s value function forecast. Similarly, I assume that households on a boundary X with z;; = x

choose consumption according to
fi(@e, h(VY pe), pt) = 0.

This is tantamount to a sequence of boundary constraints for the value function over time. In later
sections, I show that this boundary condition is implied by a “mass-preserving” KFE infinitessimal

generator and does not need to be imposed directly.

®Naturally, the logic in this text can accommodate other kinds of random processes for the state variables, like Poisson
jump processes.



As in the sticky information framework of Caroll et al (2020) and Auclert et al (2023) (MJMH),
households in each moment either update to full information about the aggregate system or not at all
for the purpose of constructing V. They do so with a constant, independent Poisson intensity \; in
an infinitessimal increment of time, a random Adt mass from the cross section of households updates
to full information.

While households are able to reason through the dynamics of g given their beliefs about its inputs,

I assume that the p equations follow the general structural relation

Qdpr = q(pe, pe, {W(V;, pe) Yiez)dt. (2)

If Q is invertible, then ¢ = Q@ '¢. In other cases some rows of () are entirely zero, such that the
equation denotes a static fixed point relationship for which ¢ is a solution. In this way, equation
(2) encompasses the dynamics of macroeconomic jump variables (like inflation), macroeconomic state

variables (like the capital stock), and static variables (like prices).

2.2 Households in the Interior

I consider the interior X \ 0X and 90X separately, as in the former case the i-indexed beliefs affect
households’ decisions, while in the latter they do not. Working with the two cases separately is
straightforward in continuous time, as the recursive Hamilton Jacobi Bellman (HJB) equation describes
only the state-space’s interior.

Discretizing the value function (1) in with infinitessimal time increments dt, the analogue to the
discrete time value function is

o i . ot ) )
W(xtypta/ﬁtvpfsaui) = max U(Cfs)dt‘i'@ r Efg‘/}ﬂdt(xmdt,pﬁdta/ﬁt+dt>p§+dtaui+dt)+
C:— T>t

s.t. Ef[doe|dWy) = Ei[f (24, cis pe)] + 00 (2)dWy, pp = Eilg(pe, pr)], Oy = EL[D; (V. p)ae]

where conditioning on the subjective p?, u’, the evolution of p, i is irrelevant for the household’s decision

problem (although the level is still relevant).

Proposition 2.1. The Hamilton Jacobi Bellman (HJB) equation for x € X \ 0X takes the form

i i i i RRAVE 1) i 1 i
PV{ (@e; pes b, Py 1t = max {U(Ct) + Vo Vi (@6 pes pres Py, 1) B f (24, 45 p2)) + it’r(o—m(‘r)o—m(gj)/viv )

+VpV!(xt;pnut,pi,ui)'ﬁi[g(p,u)]+/X5M<mf>‘/i(xt;pt,m,pi,ui)Ei[DZ‘(V,pt)ut(x’)]dw’}-

(3)
Here, I write 6,,1)F(z) as a shorthand for 25((;)), the functional (Frechét) derivative of F(x) with

respect to p(z').

Proof. See Appendix A.1. O

Definition 2.2. I define a non-stochastic steady state as one in which the value function no longer

explicitly depends on time, and the macroeconomic variables p, p are equal to their expected values



across the entire economy and are no longer changing. All households have the correct belief, while

p =0 and Oyt = 0.

Up to a first-order approximation in the macroeconomic variables around the non-stochastic steady
state, the household will treat its forecast for prices and the distribution as if they are the true prices
and distribution, as in Carroll et al. (2020). As such, I can write the HJB as a function of pi and p!
alone:

oV s 1) = { () + Vi s ) sl
C.

t

j S~ S~ 1 i R
+ vpiv;‘/l(xtva Nt)/g(pta fi) + itr(ow(x)%(x)lvim (w45 D, f1t)) (4)

[ 5ui(x/)‘4i(wt;25i,ﬂi(ﬂf'))DZ‘(W(flf'),ﬁi)ﬁ’i(fﬂ’)]d%’}

Note that the dependence of the value function on ¢ is entirely through the expected aggregates
p' and p’, while actual p and p do not affect the problem. The interior household will plan to
choose consumption to maximize its expected utility only using its subjective beliefs about prices, the
distribution, and other macro aggregates. Assuming that the optimization problem is concave, the

household’s planned control choice will thereby satisfy
V(&) = =V Vi (we; Bt i) 0 f (20, 83 7).

For many problems, the budget constraint can be rewritten so that the household chooses only a
numeraire consumption good, as in Caroll et al (2020). In such cases, ¢ can be written entirely in
terms of V,V?. In more complicated settings, however, one could consider cases with variable control
prices that the consumer is able to observe (but does not use to update their forecast). The consumer

actually choose ¢! such that
VU(Ci) = _vx%i(xt;ﬁivﬂi)lacif(xta Ci§pt),

which equates the instantaneous value of the control with its perceived opportunity cost (e.g. the
value of consumption with the subjective value of the savings given actual present prices). If p; does
not change the consumption plan, however, it still does not enter into the forecast of V. Rather,
actual p; only enters into how the distribution is updated.

I denote this control variable choice that satisfies the FOC

ci(xt;ptv Mt7ﬁi7 ﬁ)zf) = h(‘/tl(xtaﬁ§7 ﬁi)?pt> .

2.3 The Average-Belief Household

At this stage, it is useful to define an agent with average beliefs about the state of the macroeconomy.
This agent does not actually exist; in the model, households either have full information or don’t
following a macroeconomic shock. Still, the construct is useful, as the average agent will behave as

if the average beliefs about prices are the true dynamics, and their value function can be used to



determine the average choices in the economy at every point in the idiosyncratic state-space X. To
see why this is useful and convenient, I show that in a first-order expansion, only the average belief
matters for the households’ aggregate control variables, as Guerreiro (2023) argues in a sequence-space
setting.

From there, I derive the evolution of average beliefs under sticky expectations in continuous time.
The result is a system of intuitive and tractable differential equations that are straightforward to add
to the model.

2.3.1 The Average-Belief Value Function

Recall that the economy is populated with agents who have beliefs indexed by ¢ about macroeconomic
states like the distribution g and prices and aggregates p, and denote this subjective probability
density 1;% Subjective expectations about a macroeconomic random variable Y are calculated with

the subjective measure:
BilY)= [ ity

Let the measure of housholds with belief ¢ be I'(7). Define the average belief about a macroeconomic

variable Y as

E[Y] E/Sywt(y)dy

where ¢, (y) = [; ¥i(y)dI'(i) is the average agent’s belief about the PDF of Y at time t. Just like 7'
and fi* were calculated using the i probability measures, I similarly define p, and 7, as the average

beliefs about the macroeconomy:

P = Eelpe], 1, = Eipua].

Define the “expectations-averaged” value function over the entire population before any agents update

their beliefs as
o) = {u(@) + VT larip ) (o)
Ct
1 _
—t T T Avs 3 Dy [
+3 (0 (2)02(2) Vi Vi@ Py, 1) )
+vpvt(33t;Pt7ﬂt)/9(Ptaﬂt)+/X5u(x')vt(37t;ptvMt)D:(Vnpt)[ﬂt](xl)dxl}

st. x>Vt

The value function is simply the preceding agents’ value function, but specifically using the average

belief about macroeconomic variables.

Proposition 2.3. Asin Guerreiro (2023), the value function averaged over beliefs V and actual prices
and aggregates p; characterize the average control variable choice given the households’ idiosyncratic

states to first order. In other words, in a neighborhood around the non-stochastic steady-state with



deviations thereof denoted by A,
h(Vi,pe) = /C§(x;p,u,pi,ui)df(i) +O(|Ap?, Ap?, (Ap')?, (Au')?)-
Proof. See Appendix A.3. O

2.3.2 Sticky Expectations in Continuous Time

For a random variable that is changing over time, the total change in the average forecast over time

will be
& @) = 4 ([ i)

- / 0 (00) Ty () o + / e+ (00) B4, (w)
Q Q

Subj. Forecast “Gain”
— e dE
=E [Yt+8] + 7[Yt+8]~
dt
This structure has a Kalman Filter-like intuition: the agents’ ex-post belief about a macroeconomic
variable For a sticky-information environment like the one detailed in Mankiw and Reis (2002), Carroll

et al. (2020), Auclert, Rognlie, and Straub (2020), and many others, the average belief is:

Ey (Y] = / e NE,_, Vi ldr.
0

Differentiating with respect to ¢, I show in the Appendix A.2 that the average expectation then follows

OB Vo] = B0Yias] + 2 (Et Wird ~ Eo [ms]) |
Crucially, when a household updates from stale beliefs about the macroeconomy to full information,
they do not just update their forecast for the variable at time ¢. Rather, they update their entire
sequence of forecasts for the entire future, such that the update takes the form of an entire sequence
of revisions
(AEYirs] — EolYies)), 5 > 0}

While the change in the entire forecast sequence is crucial for proper updating, I later show that it
suffices to track just the zero-horizon forecasts for macroeconomic variables. For prices and aggregates

p¢ in the economy and the distribution u, I define the zero-horizon expected values
P, = lim E
b i t[Pr+at]
7, = lim E .
Hy T ¢[at]
The zero-horizon forecasts will then evolve according to

dpy

T Ei[0ipi] + A(pe — Dy)



ai, _ _
= Elouul + M — )
t
where the first term of each expression is the agent’s perceived belief of how prices and the distribution
evolve before new information updates agents’ forecasts. In other words, to first order the average

belief is updated as follows:

dp E— _
th = 9Py, 16, V) + Mpe — ;) (6)

Ofi(x) = Di (V, p)[)(x) + A (@) — Fi()) (7)

2.4 The Distribution of Agents (and Households on the Boundary)

Up to this point, I have referenced the D* infinitessimal generator; I now define it explicitly and discuss
how it implicitly enforces the boundary constraints referenced in the Overview section. Consider the
average value function V that induces consumption choices according to the first-order conditions
ct (x5 pe, Dy, i) = h(Vi(x; Dy, ), pe)- For an agent on the boundary X, e.g. at a borrowing constraint,

the appropriate boundary condition on V to describe the agent’s behavior is

file, B(Vi,pe);prspe) =0 if 2y =z (7.5)

such that Vi(x), x € OX satisfies the above implicit relationship. (Technically, this constraint should
hold for every V}, but only V is computationally important). In the particular context of a borrowing
constraint, the above implies that the household consumes exactly its income when its assets are zero
— such that the asset state variable does not drift past the constraint.

To enforce the appropriate sequence of boundary conditions on the HJB relationship, one need
only ensure that the distribution p whose mass starts within X stays within X.

First, note that the evolution of the distribution of households with the value function V' may be

expressed via a standard Kolmogorov Forward Equation (KFE)

Oupie(w) = =V - (f (@, MV, o) pr)pe()) + V24r [(0(2)o () ()] (8)

given the o(x) diffusion matrix is diagonal. Equation (27) depends on the actual prices and the actual
distribution. Expectations about prices only enter into the households’ value function V', which may
reflect some more complicated information or belief structure. This equation can be more compactly

represented with the KFE infinitessimal generator operator D*, such that

Oupe = D* (Vi pr) [l ().

Definition 2.4. Define the KFE operator’s kernel D*(V,p)(x,y) : X x X — R such that

D (Voplil(a) = [ D*(Vip)aa ta' )

Definition 2.5. A KFE infinitessimal generator D* : F[X] — F[X] is mass-preserving if its kernel



satisfies
/ D*(V,p)(z,2')dz =0 Vi’ € X.
X

By analogy, let d* = [d} ;] be a matrix finite difference approximation the kernel of D*(V,p), e.g.

D*(V,p)(x,y). d* will be mass-preserving if all of its columns sum to zero, such that:
i

Proposition 2.6. Suppose the economy starts in its non-stochastic steady state when a macroeconomic
shock occurs. If the KFE generator is mass-preserving, then the value function of households at the

boundary will satisfy equation (7.5).
Proof. See Appendix A.4. O

The proof goes roughly as follows: if the KFE operator is mass-preserving, then the net flux across
the boundary defined by the state constraints must be zero for all time. If all the probability mass
starts within or on the boundary of the space, then no mass crosses the boundary, and so probability
mass exactly on the boundary must be traveling tangent to it. This tangent motion is equivalent to
the value function satisfying equation (7.5).

Tracking the evolution of the distribution with a mass preserving KFE operator therefore naturally
imposes a time-varying boundary condition for the value function that depends on the realization of
actual aggregates. For example, if households are unable to borrow and are at a constraint of 0 assets,
they will consume a maximum of their current income, regardless of their beliefs.

For most applications involving a first-order perturbation solution, the mass-preserving KFE gen-

erator will indeed be mass-preserving.

Proposition 2.7. If the KFE infinitessimal generator D*(V,p) is a first-order perturbation of the
steady-state one with respect to macroeconomic variables, then it will be mass-preserving if the Jacobians

evaluated at the steady-state are mass-preserving.
Proof. See Appendix A.5. O

The result follows immediately from the linearity of the operators. In effect, if the perturbation
solution enforces the correct idiosyncratic constraints in the FIRE case via the KFE operator, it will
also enforce the correct constraints in the non-FIRE case along the boundary.

2.5 Aggregation

Because the average belief value function determines the value of average controls conditional on the
idiosyncratic state-space point in the state-space, V will also be sufficient to characterize macroeco-

nomic aggregates. Aggregate controls will then be

Ct:/Xh(Vt,pt)ut(:c)dx

10



such that the aggregate variables will depend on the actual measure of individuals given their choices

derived from the average expectations. Similarly, aggregate states can be computed as

Xt:/ xpy(z)de.
X

As such, the actual p; in the economy will evolve with the true distribution ¢, the true p;, and the

subjective belief-averaged V:
Qdpy = q(pe, e, h(Vi, py)dt. (9)

2.6 Full Information Households

Every period, a mass Adt mass od new households becomes full information. It’s necessary to track
these households as well, as they become a greater and greater share of the population over time (and

thus have a greater and greater effect on the average). Define the full information value function as

p‘?},(mt;ptv#bpt?ﬁtvvt) :ch?x {U(Ct) + vx‘z(xt;ptaMtaﬁtaﬁt’vt),f(l‘ta Ct;pt)

1 ~
+ §tr(ox(:c)ax () V2Vi(ze; pes i)
E[dpi]
dt

+vpv(xt;pt7ut7ﬁt7ﬁtvvt)/ +/ 5#‘/;5(xt;pt7,u'tvﬁtaﬁtavt)atutdx
X

_ o dp A o
+vpv($t;ptvﬂtaptnu’tavt)ldtt+/ OuVi(e; e, it Dys By, Vo) Opfiyder
X

+/ 5V‘7t($t;pt,ﬂt,ptaVt)atvtdx}-

* (10)
V uses the true law of motion for prices — given the actual prices and the mean beliefs across the
economy, and the belief-averaged value function V, which influences average choices. A rational full
information household thus forecasts 1) their idiosyncratic state variables’ evolution, given the true
prices, 2) the evolution of those prices, given the true distribution of agents and their average choices
(encapsulated by average belief V), 3) the evolution of the total distribution, 4) the evolution of
expected prices and 5) expected distributions for the average household, and 6) the average value
function (and therefore decisions) of the average agent in the economy, which when combined with
the true distribution is used to formulate a forecast for prices.

Altogether, equations (5-10) nearly describe how the system evolves for the purposes of calcu-
lating macroeconomic and microeconomic (but expectations-averaged) variables, but with a caveat:
equation (5) is incomplete, and only models the average household dynamics if the composition of
households did not change. With a probability Adt, a household is uniformly selected (after choosing
their consumption) to update their beliefs about the macroeconomic variables to full information. As
such, V should evolve according equation (5) — but with an additional A(V; — V) that the average
household does not anticipate or plan for in their optimization problem. I discuss how to incorporate

this adjustment into the dynamics in the next section.
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2.7 A two-part problem

To solve the model, one can solve for two different stable manifolds (subspaces in the linearized model),
consecutively. First, one can solve for the behavior of the fictitious average agent to determine the
evolution of V. Then, one can solve the full information households’ problem, taking the average agent
as a state variable (and where the full information agents internalize how they will update the average

agent over time).

2.7.1 The mean belief household solution

First, consider the perceived problem of the fictitious average household. For a given household, the
value function may be concentrated to have an explicit time dependence, such that it represents the
choices of the household for a given sequence of macroeconomic aggregates. Denoting the drift of the

macroecomic variables 0,V (x;), one can write

OV (z¢) = VVi(ze; Dy, 1) 9Dy f1t) + /X 6zV i (e; e, gt Py Be) Dy (Vi By) (] d.

By subsuming the macroeconomic variable dependence into the value function, the decision problem

or “partial equilibrium” value function is then

pVi(xy) = max {U(Ct) + Vo Vilae) f (4,6 D,) + ;tr(%(ﬂf)%(x)/vazcv(xt;pnMt))} + 0,V (1) (1)

s.t. xy > x Vit
where
Oy = Df (Vo i) e (12)
df) S
ditt - Q(:u’tuptv Vt) (13)

This system exactly resembles the FIRE system — except with expected prices in lieu of the real
ones. The reason for this is that the average expectation agent believes that their forecast of prices is
correct (or at least, on average correct in a certainty equivalent setting).

The concentrated HJB can then be linearized around the non-stochastic steady-state with respect

to the macroeconomic variables as
O AV (z4) :/ Avv(a:,x’)AVt(:c')dx'+/ Avu(x,a:’)Aﬁt(x’)da:’—i—Avp(x)Aﬁt + O([]Q) (14)
X X

The A operators denote the partial equilibrium Jacobians of the household’s concentrated HJB with
respect to its own value function and the average beliefs about prices and the distribution evaluated

in the non-stochastic steady state. In other words,

§
dv(z')

Avy (z,2') = pd(z — ') —

H(0(0)) + Vav(o) o Wo@)):P) + o) Tulan),
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h(v(x)) + Vou (@) f(z,h(V);p) + %tr(%(ﬂf)az(x)'vﬁv(%)) (=0),

Avp(z) = —Vzv(x)’;pf(:):, h(v);p).

where §(x — ') is a Dirac-delta function and % refers to the functional (Frechét) derivative

of f with respect to g. Note that in the steady-state, actual and expected prices are equal and all
households have the same value function v(z); these Jacobians are exactly the same as their FIRE
counterparts.

Suppose the average household’s perceived problem can be solved for the value function’s dynamics
on the stable manifold, such that for a sequence of beliefs about prices and the distribution, the value

function will satisfy (at least, under the household’s average beliefs)
E [0, AV ()] :/ va(x,a:')AVt(x;)da:'—i—/ By ,.(z, 2" ) AT, (2))d2' + Byp(2) AP, + O([...]?).
X X
The forecasts of the expected household (prior to updating) will also be

B0 A ()] = [ Buua)AViwde’ + | Byulo. ) ATula)de’ + Byul@) A5, + O(1.)

E0An] = | Bue.a)AVi(w)de'+ [ Byule!)Njila')de’ + BypSp, + O([-)

In the actual economy, however, the average beliefs are updated with the realizations of the actual
pt and ;. Unfortunately, this is slightly complicated by the fact that learning at time ¢ updates
the whole forecast sequence of (p,, i, )r>t, not just their contemporaneous values. To see why this is
important, consider integrating forward equation (14), with the assumption that lim; ., AV;(z) = 0.
Using the partial equilibrium Jacobians and treating the linear operators analogously to matrices, the

value function becomes:
AV () :/ / [G_AVV(T_t)](:E,x")[/ Ay p(z, 2 ) AR, (2")dz' + AypAp, | da” dr.
t X X

where the exponential operator is [e‘AVVt] (z,2') is the kernel equivalent to a matrix exponential.® An
update results in a change to the value function that takes the entire future path of the new forecast
into the account — a complicated object. Fortunately, there’s a simpler approach: use the present

values already calculated in the value functions of the full information agents.

2.7.2 Full information households and updating

Consider the full information agent’s decision problem, given a sequence of macro aggregates and the

behavior and beliefs of other agents in the economy (e.g. V,i,p). By concentrating equation (10),

tn

®More explicitly, [eVV!](z,2") = d(z — 2) + 300, H.A&;L‘)/(:IZ’,LE/),

where Ai}l‘),(x, )= [ [y Avv(z, ) Avy (21, 22) (- ) Avy (T, 2')dzy .. dep1.
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the full information value function is

i) =) + VT S o i) + i@ @V VI |+ 0T @)

s.t. xp > x Vi

Now, however, the sequence of actual prices evolve using the average value function (which character-
izes average household actions) and the actual distribution, along with actual prices and the actual
distribution.

Orp = D*(Vt,pt)#t

th = q(lu“tapta V)

The full information rational agent knows that the other agents will learn over time. The law of motion
for the average macroeconomic beliefs is the solution to the non-updating household’s problem, but

modified for the Adt measure of agents that update using the true values. As such,

AAp,  —
dtpt = Ey[Adip)] + A(Ap, — Ap,) (16)
OAT,  —
St = B0 Au] + A(Ap - AT) (17)

where E[0;Ap;] and E;[0; Ap] are the solutions from the average expectation block. By analogy, one
could reasonably guess: B
OAV,

ot

where E;[0;V;] is again the solution from the average belief households’ problem. This turns out to be

= E,[0,AV] + MAV, — AV))

correct, as per the following proposition:

Proposition 2.8. To a first-order approrimation, the average belief household updates its value func-
tion with a constant factor of N(AV — AV).

Proof. See Appendix A.6. O

The intuition behind the result is straightforward: although rational expectations households and
non-updating households have very different information sets, both solve essentially the same partial
equilibrium decision problem when planning their consumption, just with different beliefs. The value
functions themselves are linearized with respect to those beliefs, so the effect of a change in a sequence
of beliefs is equal to a difference between value functions.

One could also think about the intuition in a slightly different, but equivalent, way: as time
progresses following a time-zero shock, the mass of households who have updated grows at a rate of
A per unit of time, while the mass who think they are still in the steady state shrinks at the same
rate. This pulls the overall average belief households toward the full information ones at a rate of A,

as more and more FIRE households become averaged into the entire population.
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3 Linearized Solution

The preceding section described the linearized solution in a more abstract functional form. To actually
calculate the solution on the computer, one discretizes the functions onto grids as described in Achdou
et al (2020). Functions become vectors, while integrals becomes sums.

Altogether, the process can be summarized in three steps:

1. Solve the full information rational expectations model:

pVi(zy) = max {u(ct) + Ve Vi(xy) f (e, cispe) + 1tr(ax($)ax(:v)’ViW(xt))} + O Vi(xy)

2 (18)

s.t. 1y > x Vit
Ocpe = Dy (pe, Vi) bt

Qpt = q(pt, pe; Vi)

2. Construct the solution to the average belief households’ problem in the absence of updating.
This is simply the FIRE solution, but with the subjectively expected variables instead of the
true ones. The new system describes E;[0,V;], E[0y1¢], and E;[0;py].

3. Solve the full information households’ rational expectations problem given the average behavior

of the other agents, accounting for how the average information agent updates.

In what follows, I assume knowledge Bayer and Luetticke (2020) and Ahn et al. (2018), which
are in turn based on the methodology of Reiter (2009). After discretizing the value functions and
distributions over a grid, one may solve for the non-stochastic steady-state. Thereafter, one constructs
a first-order perturbation of the economy from that steady-state due to aggregate shocks. The A and B
block matrices are essentially the discretized matrix representations of the A and B terms introduced
earlier in the text. I also dispense with the A notation; V', u, and p in this section are all discretized
vectors that represent deviations from the non-stochastic steady-state.

First, one starts with the FIRE Jacobians for equation (18):

1 0 0] [Eav]] [Avw Av. Av,] [V
0 I O dp | = |Aw Ay Awp| | 1] dt, (19)
0 0 Q| [Eldp] Ay Ay App P

If the Blanchard and Kahn (1980) conditions are satisfied, one can solve the system as in Sims
(2002) using a generalized Schur decomposition to determine its dynamics on its stable manifold — the

stable subspace in the linearized, discretized model. The solved rational expectations model is then

A% Byy By, Byp| |V
di| = |Bw Buu Bul| |n]|dt. (20)
dp Bpv Bpu  Bpp p

Once again, the B;; matrices represent the Jacobians of the equilibrium system, restricted to the stable

subspace.
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Before any updating occurs, agents behave with the belief that the feedbacks of the system are in
the stable subspace spanned by the B system in the absence of shocks. Over time, however, households
are awakened with a Calvo Poisson rate of A to the fact that a shock has perturbed the economy from
its non-stochastic steady-state. The linearized average beliefs about prices and the distribution then

evolve according to

dp. — - o=
th = BwVi + BuvTiy + Bupby + My — 1)
dp, _ B.vVi+ Bovhi, + B, B, + A p
E = Dpy Vi + pV it + pp Pyt + (pt - pt)
th - — = % e
e = Byv V¢ + By, + Byppy + A(Ve = V).

with the initial conditions py, = 0, /iy = 0, and Vo = 0 if the agents start with the belief that no shocks
have occured such that they are in the non-stochastic steady-state. As discussed in the preceding
sections, the distribution evolves according to the average control choices induced by the average
belief. These affect the prices in the economy, which are determined via linearized market clearing
conditions. Given the actual distribution (and the actual value of other macroeconomic variables),
prices thus solve the same fixed point problem that they do in rational expectations — except that now,
they must be consistent with market clearing under the evolution of control variables chosen with the

non-FIRE belief-averaged value function:
Apppr + Apppie + Apy'Vy = Qdp/dt

Actual prices in turn determine the actual decision problem for the full information value function 17,
which is sufficient for updating the average belief value function V.

Altogether, the new system for the sticky expectation economy is:

)

100 00 0] [EaV]] [Avy Av, Ay 0 0 0 v

07 000 0|] du 0 Ay A, Auw 0 1

00 Q00O |Eldp]| | 0 Ay Ay Ay 0 Pl

000 I 0 0|]dV Ml 0 0 Byv-A By, By, ||V

00001 0|]|dn 0 A 0 By  Bu,—A By, I

000001 d] [0 0 AN By By, Bpp— M| |B
(21)

This modified system can then be solved with standard methods to determine the dynamics of an
economy under a sticky information structure with a constant learning rate of A.

With just a few additional lines of code, it is possible to recast a FIRE model into a sticky-
expectation environment. Similarly to the FIRE system, the model’s jump variables are X/}t and pg,
minus whatever predetermined variables are present in p;. The system therefore satisfies the Blanchard
and Kahn (1980) conditions when the number of explosive eigenvalues matches the cardinality of f/\}

and the non-predetermined variables in p;.
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4 Examples

To demonstrate how the solution method works — and that it does work — I provide two worked
examples in this section. In the first example, I demonstrate the solution technique for a simple
representative agent New Keynesian model for which a closed form solution is known and show that
my matrix arithmetic generates the correct closed-form answer. In the second example, I numerically
solve a canonical sticky information HANK model with both my state-space methodology and the
sequence-space methodology described in Auclert, Rognlie, and Straub (2020). I simulate a monetary
policy shock and a fiscal transfer shock in both versions of the model and show that the two solutions

agree up to a small approximation error that declines as the sequence-space time discretization shrinks.

4.1 A toy representative agent example

My computational approach can be demonstrated using a simple representative agent macroeconomic
model that can be exactly solved analytically. Consider the simple FIRE representative agent model
with the log-linearized Euler equation:
Eildey] .
it s 7 7
dt Yot
where the real interest rate follows 7; = e~ **ry with 7 given. Using the households budget constraints
and assuming that the household consumption path returns to steady-state, the consumption choice

can be written as:

= p/ e UVPR, [ dr — fyl/ e~ UOPR, [, dr. (22)
t t

With some calculus and a goods market clearing condition that y; = ¢;, the output response to the
sequence of real interest rate deviations is
41
ye =" —roe” ™
K
Suppose instead households update their information about the macroeconomic environment at a rate

of A. Aggregate consumption is then chosen in a way that depends on the aggregate expectation E;:

o o0

¢ = p / PR, [ Jdr — 4! / e~ 00, 7. ]dr. (23)
¢ t

In the appendix, I show using sequence-space solution techniques that the sticky-expectation law of

motion will be

e _ (dut !

2t (1= -1
0 at +( Mt)ﬂ) Yt Ty e,

where yi; = 1 — e~ is the fraction of households who have updated to full information. In the limit

as p — 0, the exact closed form solution is:

al, —(A+k
Y = — 1;(6 t_ e~ )t)ro. (24)
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Using the machinery from the previous section, the A matrix Jacobian for the FIRE system is thus

b 2

while the B matrix is here identical to the A matrix, as there are no static variables. The new

E¢[de]
dr

augmented system will be

[, [de] 0 vt o0 0 ¢
dr 0 -k 0 0 F
"= g "l at (25)
dy A0 =X A Y
dr 0 X 0 —XA—k||T

Clearly, the eigenvalues of the system are 0, —x, —A, and — (A + k). Technically, the system is bor-
derline indeterminate — as the rational expectations model I started with is borderline indeterminate.
However, if we require that ¢; return to steady-state (and not just remain bounded), then this is a
constraint on the zero eigenvector (the nullspace of the matrix). As I show in Appendix A.8, solving

for the stable subspace of equation (25) recovers equation (24) for aggregate GDP exactly.

4.2 A Canonical HANK model

In this section, I solve a canonical HANK model with sticky expectations using both my state-space
approach and the sequence-space approach of Auclert, Rognlie, and Straub (2020). The model is
essentially the one solved in Kwicklis (2025a); the reader should refer to that paper for the model’s
derivation and details. There are only two important changes. First, while the original model was
solved with full information and rational expectations, the model in this section is of course solved
with sticky expectations. Second, the calibration in this section uses a more conventional active
monetary/passive fiscal form, as opposed to the “active fiscal” experiments considered in Kwicklis
(2025a). The central bank raises nominal interest rates more than one-to-one with inflation with a
Taylor rule coefficient of 1.5, while the government adjusts taxes over time to slowly stabilize its debt.
All other parameters are unchanged and are listed in the appendix.

For illustration, I consider two different shocks: a monetary policy shock ((mp) that lowers the
interest rate by 1% on impact, and a fiscal transfer shock ((iax) that sends flat transfers valued
at 1% of annualized steady-state GDP to all households simultaneously. The monetary policy shock
demonstrates how the methodology properly leads impulse responses generated by general equilibrium
feedbacks to become hump-shaped, while the fiscal transfer shock demonstrates how the model handles

instantaneous feedbacks to households’ individual budget constraints.

4.2.1 Abridged setup

Households choose consumption ¢; and take hours worked L; as given (chosen by their union to meet
aggregate labor demand). They save via an non-contingent bonds a;. subject to idiosyncratic risk

about their labor productivity z;, which follows a Gaussian log Ornstein-Uhlenbeck process with a
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mean reversion parameter of #, and a variance parameter of o2:
dlog(z) = —0,log(z)dt + o.dW.

where W, ; is a standard normal Weiner process. The FIRE Hamilton Jacobi Bellman (HJB) equation

is 1
1=y 1 L;
{Ct B — T + 0aVilar, 20) (reay + wily + Ti(ze, G) — ct)}

Vila, 2¢) =max
pVilas, ) 1—~ 1+1

Ct

1 1 (26)
+ 0. Vi(as, z) <2<7§ —0.log 2t> + 5022,5283‘/2(%7 2t) + 0 Vi(at, 2)

s.t. a; > 0.

The first-order conditions imply the household chooses ¢; = (9,V;) /7, such that h(V) = (9,V) /7.

The distribution of households evolves according to

0 0 [(da; — 0 (E;ldz 1 92
%(a, 2)=— o <t(Vt,pt,a,z)ut(a,z)> -5, ( tldz] we(a, z)) + 2azz<a2z2ut(a, z)> (27)

dt dt

da — —

E(Vt,pha, z) = reay +wily + Ti(z,¢) — h(Vy)

Decentalized unions negotiate wages such that wage inflation (and overall inflation, if the passthrough
from firms to consumers is complete) abides by a New Keynesian Phillips curve similar to the one in

Auclert, Rognlie, and Straub (2024):

Et[dﬂ't] N Ey Lt 1 €g—1
dt _Wt_ewz// hala, 2)7 — =

The Fisher equation connects r = 4, — 7. Tax policy is set via a slow-moving passive rule

(1 = 7)zwece(a, z)_'y) p(a, z)da dz. (28)

Tt = T’(UtLt + ¢B(B - B*) + Ctax,ta (29)

and government bonds evolve according to

dB;

T = —(T; — Gy) + (i — m;) By (30)

Monetary policy is set with a Taylor rule, plus a monetary policy shock:
it =7 + GxTt + Cmp,t- (31)
The aggregate shocks ¢ follow a mean-reverting process d¢;; = —0;(; +dt, such that
Gie =€ "0, (32)

I linearize equations (26-31) around the non-stochastic steady-state wherein the aggregate shocks are
disabled: ;0 = 0. From there, I solve the linearized FIRE version of the model using the methodology
of Bayer and Luetticke (2020) in state-space and using the sequence-space Jacobian (SSJ) algorithm
of Auclert et al (2021) in sequence-space. I then solve the sticky expectation variation of the model

using my methodology in state-space and the Auclert et al (2020) methodology in sequence-space.
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Figure 1: Response of a canonical HANK model to a 1% monetary policy shock and a 1% government transfer shock,
as a percentage deviation from the non-stochastic steady-state. Orange and red denote inflation (using the Auclert et al
SSJ framework and my state-space approach, respectively). Blue and green denote GDP.

4.2.2 Simulation results

In Figure 1, I depict the impulse response functions of output and inflation to a 1% reduction in the
interest rate and a 1% of GDP increase in lump-sum government transfers using the two different
solution methods. Here, I set A = 0.30, such that roughly half of the households have fully updated
for the presence of the macroeconomic shock 2.5 quarters after the shock’s impact.

On impact, a small gap appears on impact between the two impulse response functions. This is
because the sequence-space solution becomes higher and higher dimensional in continuous time as
the time grid becomes finer, which in turn limits the resolution of the continuous time SSJ solu-
tion.” Approximation error notwithstanding, the state-space methodology broadly coincides with the
sequence-space one, even despite the fact that the state-space approach undergoes dimension reduction
with a fixed copula. Note that even though stimulus checks are macroeoconomic variables that only a
zero measure of households observe upon impact, the households do immediately observe an influx of
resources into their individual idiosyncratic accounts. As such, output jumps on impact. The model is
linear with respect to macroeconomic shocks, so if government transfers are reduced aggregate demand
also falls on impact, exactly inverting the pattern of a stimulus check disbursal.

As one might expect, increasing the learning rate by increasing A\ leads the impulse response
functions to a monetary policy shock to more closely resemble those of the FIRE model. This property
is displayed in Figure 2. In the FIRE setting, output and inflation jump as soon as interest rates are
lowered. In the sticky expectations setting, however, the output response takes more time to build

and peaks lower as A decreases.

5 Conclusion

In this article, I demonstrate how to solve a linearized sticky-expectation HANK model in sequence-

space by recycling the Jacobians obtained from the full information, rational expectations version of

"Naturally, Auclert, Bardéczy, et al. (2021) originally formulated the SSJ approach for discrete time. Greater numerical
accuracy could be obtained by using a non-uniform time step mesh — but this further complicates the approach. As the
size of the discretized dt time steps falls, the solution methods align more closely.
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Figure 2: A canonical HANK model’s response to a 1% monetary policy shock, for differing degrees of expectation
stickyness .

the system. The approach is simple to implement, and only requires re-arranging the block matrices
of the FIRE problem. Each step is justified by relatively intuitive theoretical arguments, which are
simplified by working in continuous time and hold for a very broad class of models. I then provide two
concrete applications of the solution technique — a simple analytical one, and a full-fledged numerical
HANK model — and show that my methodology produces the correct answer in the first case and
closely matches the sequence-space Jacobian numerical approximation in the second.

With this framework developed, a natural next step is to apply it to an quantitative HANK model
that has been estimated to match real-world data. I do this in Kwicklis (2025b). Many other interesting
extensions exist, however. For instance, because the sticky average beliefs are explicitly tracked in
the model, one could consider the effect of “expectations shocks” that directly change average beliefs,
but do not directly affect market fundamentals. Additionally, while I only consider the simple sticky
expectations case, it may also be possible to incorporate other learning and information structures into
the state-space setting, as Bardéczy and Guerreiro (2024) have done in the sequence-space setting. It
may also be possible to adapt some parts of the solution technique to discrete time models as well,
although proving that the technique works may be more challenging. In any case, this methodology
offers an easily implemented tool to allow researchers to consider alternatives to the full information,

rational expectations setting — while still maintaining the convenience of a state-space framework.
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A Appendix to Section 2: Derivation Proofs

A.1 Proposition 2.1: Derivation of the HJB Equation for i-Belief Households

Statement: The Hamilton Jacobi Bellman (HJB) equation for x € X \ OX takes the form

. o y . i . 1 .
PV (wt; pe, pe, Py 1) = max {U(Ci) + Va Vi (w05 prs s Pl 1) By (20, 033 )] + S tr(0a(@) o (2) VIVt

Ct

+ Vo Vi (24 iy e, Py 1) Bk [ (p, 1)) +/X%W(wt;pt,ut,pi,ui)Ei[DZ‘(V,pt)ut]d:c}.

Proof. The value function may be additively separated to write

[e.e]

~ . S ~ . t+dt . ~ . .
IEZ;/ e TPy (e )dr = Ei/ e~ TPy () dr + E%/ e~ TPy () dr
t t t-+dt

o0
= u(cff)dthe_pdtIElff ert/ . e_(T_[HdtDpu(CZT)dT
t+dt

Vitat (IH—dt yPt+-dt 7Mt+dz)

= “(Ci)dt + e_pthiWert(%det; Ditdt» Hi+dt)

So if the subjective measure still obeys the Law of Iterated Expectations (LIE), the discretized HJB

is indeed still
W(th;pt, ani? Mf‘,) = ina}i u(cﬁ)dt + e*pdtﬁi‘/}idt(%wml)wdt, ,Ut+dtapzl;+dt7 Mi+dt)
T)T>1
st By[a|dWy] = By f (w1, ¢ pt) + 00 (2)dW;

Approximating e *% ~ 1 — pdt,

Vi (5 pus s fs 143) = (max u(cy)dt + (1 — pdt) VY, gy (Terars Pesdrs Bevdts Prars Hosar)

Cr)r>t

Using a Taylor expansion about dt = 0,

Vt+dt($t+dt, Pt+dty Ht+dts Pr+des Ht+dt) =V (@t; pe, pt, Dy 1)

+ Va Vi (25 prs pie, pho 1) Eilde] + S 01(00 (2) 00 () VIV dt

+ VpVi (e pr, b, D}, p1y)'Dreclt + dt/ 8,V (e P, pie, s 1) Dppuedie
X

+ Vpi‘/ti<xt;pt7 ,u’tapiv Mi)/pidt + dt/ 5ui Vi(xt;pta /*Lt7p11;7 ,u%)(“)t,uidx
X

+ O(dt?)

where the Hessian V2V appears because the differential of the Brownian covariation process d(z); is
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proportional to dW? = dt. Taking subjective expectations,

BV g (Trsdes Pevdes Hesdes Phvaes iy ae) =E3 Vi (w15 e, s 4 1)
. S 1 .

+ Vo Vi (@ pe, e, i, 1) By [dae] + §tr(0w(w)%($)'V§V’)dt
+ E;[vp‘/tz(xta Dt, /Jtvpé? Nfﬁ),pdt]

+ Ei I:dt/ (5“Vi(mt;pt,ut)6tutdx + O(dtQ)

x
where I further assume the orthogonality conditions
E{ [V Vi (243 pe, e, P, 117) ) = 0,

EiV (w4; i, pir, Py 1) Oppty = 0

since holding subjective beliefs p, u¢ constant, households in the state-space interior do not forecast
their value function to change based on the actual py, us.

I can substitute the subjectively expected Taylor expansion back into the HJB to write:

V(63 iy bt Dl 111) = max u(cy)dt+

(1 — pdt) | Vi (w; pe, s P 113) + Vo Vi (e, o) Bi L f (24, ¢ pe ) dt]

1 .
+ §tr(aw(x)am(m)’Vin)dt

+ Vpivti(xt;]?ta Mmpin M;)/E; [pldt + dt/ Oy Vi(xt;ptv Mt»pi» M%)E; [Oppue] dx + O(dtQ)
X
= p‘/ti(xt;ph ,u’hp;fi? /’Lllf)dt = m&XU(C;)dt + vx‘/;i(xt;ptu thiJ /’L%)/E%f(xh sztﬂpt)dt
¢

1 ,
+ itr(ax(x)ax(x)’ViVZ)dt
+ apl‘/;fz(l‘tv Dty Ut, plzfa Mi)ﬁi[p]dt
+ //Y 8, Vi (i3 pes s Pl 1) B [Orpae] di + B[O Vi (i pr, o))t + O(dt?)

Dividing by dt and taking dt — 0:

p‘/;(xtvptv Mt7p%7 /’lef) :H{?‘X {U(C;’) + va?‘/tl(‘rta y Pt ,u’tapzv /ﬂtI)IEi[f(xta Ci7pt)] + §tr(0$<$)0$($>/V§Vl)
Ct

i i NI 5Vi$§pa 7pi> : =i
+Vp¢Vt(:ct;pt,ut,pt,ut)’Et[p]+/ e LI Py Mt)Et [Opue ()] da’ 5,
X 5Mt($)

as proposed in equation (3).
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A.2 Sticky mean expectation evolution

Start with the expression for the mean forecast:
E,[Yi] = / e NE,_ Y ]dr
0
Differentiating with respect to t,

d_
SR = / [ sl ()

- oA [dyt—l—s Yer )+yt+5(w)dw':(_j;(m] dwdr
[ AYits L dip—r(w)
/ ze /Q @ r(ldudr+ [2e [ i) P dur

d s o — T
= / Ae ™Ry, {W] dr + / Ae™ T / Yirs(w) Wier(©) 17
0 dt 0 Q dt

g

Ei[0¢Yits]

For the second term, I can interchange the order of integration and integrate by parts with u =
Ae My s(w) and v = =, (w):

// )\e_’\Tyt 4 dwt ul d dw—// e TYrps(w ( dwth()> drdw

o —\T > w —\T . w T
/Q Ay (@) (@) Tzod” /Q / Prr ()05 e a (@)

= A/Qytﬂ(w)wt(w)dw - )\/Q/OOO Grr (WA Yy s (w)drdew
= )\<Et [Yies] — Ee [Yt+s]>~

As such, the complete evolution of the forecast is

d— — _
OB Vo] = B0Yis] 4 2 (Et ¥is] ~ E, [ms]) |

A.3 Proof of 2.3: Characterizing the household choices averaged over beliefs

Proof. Let A denote the difference of a variable from its non-stochastic steady-state (when there are

no macroeconomic shocks). The consumption choice averaged over all idiosyncratic beliefs will be:
/Ci(w;p,u,pi,ui)di = /h(VZ(w;p,u,pi,ui),pt)d/\(i)
K3 K

Let Gy pi(z) and Gy ,i(z) denote the Jacobians of V' with respect to p' and u’ at the steady-state,
and let Gy,(x) and Gy,(x) be the Jacobians with respect to the actual p and p. Additionally, let
Gyp(z) and éﬁ/u(a}) denote the Jacobians of the value function calculated with the average beliefs.
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Note that since Gy, () is itself a functional derivative, so the operator is in fact shorthand for

[ oV (x)
 Jx op(a’)

Gvu(r)Ap = D, VI[Au|(z) Ap(a")dz.

With a first-order Taylor expansion around the steady-state:

/Aci(w;p, p, p', pt)di = /8Vh(x) [Gvp(2)Ap + Gy () Ap + Gy pi(z) Ap' + Gy i (z)Ap'] (i) + Oph(z)Ap

+O(|Ap®, Ap, (Ap')?, (Au)?|))

=0y h(x) [va(x)Ap + Gyu(x)Ap+ Gy pi (z)Ap + Gy i (:U)Aﬁ] + Oph(z)Ap
+O(|Ap®, Ap, (Ap')?, (Au)?|))

=AR(V (p, p, 5, 1), p) + O(1AP?, Ap, (Ap')?, (Au')?])

As such,

h(Vie,p) = co(z;p, p, B, i) = /Ci(w;p, p,p', p)dL(3) + O(|Ap?, Ap?, (Ap')2, (Ap)?|)

(2

in a neighborhood around the non-stochastic steady-state. O

A.4 Proof of Proposition 2.6

Statement: Suppose the economy starts in its non-stochastic steady state when a macroeconomic shock
occurs. If the KFE generator is mass-preserving, then the value function of households at the boundary

will satisfy equation (7.5).

Proof. Let J(x,c(x),p, u) denote the probability fluz vector field for all x € X, i.e. the instantaneous
rate at which probability mass changes in a given direction at a point in the idiosyncratic state-space
x € X per increment of time. Note that probability mass enters or leaves a region of space in one of
two ways: mass flows into the region advectively by being pushed directly by the flows of the mean
state equations, or it diffuses out at a rate related to the directional gradient of the mass already in

the region relative to surrounding regions. For my problem,

T, (V@) s ) = £ en (@), pyi() = 3V (02()oa(0) )

Vv
Diffusive

Advective

(Note that V - A(x) is here defined as the gradient operator dotted with each row of the matrix,
transforming the matrix into a vector.) The Kolmogorov Forward Equation is equivalent to the

statement
Oppg(z) + Vg - J(2g;c(Vi(x)), pe, pie) = 0.

such that the total change in probability density at a point x € X is equal to the spatial divergence
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of the probability flux field. Writing this in terms of the KFE infinitessimal generator,

D*(va)[:u’] (.17) = _VJ»‘ : J(xt; Ct(m(‘r))7ptvﬂt)7 such that atluft = ’D*(V7p)[:u’t](x)

Note that as the name implies, if the operator is mass-preserving, the total flux of probability

through the space X will always be zero:

[ o) = | D0 V)@ie = [ [ D0V e da' e
_ /X /X D*(p, V) (. 2 )u(a ) ' = /X [ /X D*(p,V)(x,x’)dm/u(m’)dm’:0.
0

The first equality of the second line above follows from Fubini’s theorem, since the boundary is assumed
to be rectangular, allowing for the order of integration to be interchanged.

Using the relation between the probability flux field and the infinitessimal generator, it then follows
that

O:/)(D*(V,p)[p](a:)dm:—/va-de":—72){J(:p)~ﬁ(w) ds

where the last inequality follows from Gauss’ Divergence Theorem, and S is the boundary of the
idiosyncratic state-space (note that the surface integral on the right is one dimension lower than the
volume integral on the left). Here, 7i(x) is a unit vector normal to the boundary 0X, at a point
evaluated somewhere along said boundary.

As such, the total net flux of probability mass across the boundary of the state-space must be equal
to zero. However, if all of the initial distribution is inside the idiosyncratic state-space (as it is in the
non-stochastic steady-state), then this means there can be no flux anywhere along the boundary.

Note that the above equality must hold for any distribution, even those that that start with a
Dirac delta mass on the boundary. As such, the final integral must hold point-wise. Intuitively, if no
mass can cross the {x; = z,;} hyperplane, then probability must flow along (tangent to) it. As such, a

vector orthogonal to the hyperplane boundary must also be orthogonal to the probability flux:

For a boundary of the form z; > x, the orthogonal vector 7 is simply the ith standard basis vector.

Suppose there is no diffusive term for the constrained variable ;. This then implies if € 0X,
J(z; h(Vi(2)), e, put) - 1i(z) = 0

= fila, M(Vi(2)), prpu) pa(x) = 0

And if p¢(z) > 0, then
— fi(z,h(Vi(x)),p:) = 0.

A mass-preserving KFE infinitesimal generator at each point in time is thus tantamount to a boundary
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condition

fi(x> h(%(l‘)),pt) =0

where x € OX such that z; = z;.

For example, suppose the law of motion for assets is f(x¢, ¢, pr) = rae + wy + Ty — ¢, where
pt = [re, wy, Ty] in this case is the real rate of return, the aggregate wage, and government transfers to
households (all macroeconomic objects). The household at the boundary with assets z = 0 will then
satisfy

ca=h(Vp) =we + T

as an equilibrium condition. This condition is inherited from the fact that the HJB infinitessimal
generator is mass preserving — even if the household does not correctly perceive macroeconomic wages

and prices. O

A.5 Proof of Proposition 2.7

Statement: If the KFE infinitessimal generator D*(V,p) is a first-order perturbation of the steady-state
one with respect to macroeconomic variables, then it will be mass-preserving if the Jacobians evaluated

at the steady-state are mass-preserving.

Proof. This statement is nearly a tautology. To see this, take the kernel and approximate to first

order:
at,ut(m):/ D*(W,pt)(m,x')ut(aj')dw’%/ D{}(w,x’)AW(az')dw’—i—D;(x)Apt—l—/ Dy (z, ") Apy (2)da’
X X X

Here, Dy, D}, D, are the Jacobians (Frechét in the for p and V) evaluated in the non-stochastic

steady-state. Integrating over the entire distribution, if the Jacobians are all mass-preserving;:

[ ouwtwyiz = [ | D*Wipe o’ da
X xJx
z/ / Dy (z, 2")AVy(2")dx' d:v+/ D;(x)Aptdx+/ / Di(z, ') Apg(2')da” do
X Jx X xXJx

_ /X [ /X D{‘,(x,x’)dx] AVi(a!) da’ + /X D5 («)dzAps + /X [ /X DZ(w,x')daz] Api(a!)da’
=0.

If for any distribution u; in the approximation,

/X /X D*(Vi, pe) (2, 2" )y (2)da'de = 0

then it must also be that up to a first order approximation

/ D*(Vy,pt)(x, 2" )dz = 0
X
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such that the linearized KFE operator will also be mass-preserving in the perturbation if the Jacobians

integrate to zero over x. O

A.6 Proof of Proposition 2.8: Average belief value function updating

Statement: To a first-order approrimation, the average belief household updates its value function with
a constant factor of /\(A‘A/ — AV).

Proof. First, note when an update occurs, the learning occurs to the entire sequence of macro aggre-
gates. At time ¢, the sequences of beliefs (both about the current state and the future) are updated
at rates of {A(fe4s — Hyys) bs>0 and {A(pits — Dyys) e>0 multiplied by the time increment dt.

Next, note that the average expectation household and the full information household both essen-

tially solve the same HJB equation:
pvr(x1) = max {U(h(vt(iﬁt),pt)) + Vevg(ar)' f (e, h(vt(l’)apt);pt)} + Opv(z4)
s.t. xy > x Vt.

which can be linearized such that
Oy Avy(x) :/ Avv(a:,x’)Avt(x’)dm’—i—/ Ay, o) Ap(2')da' + Avp(2) Apy + O([..]2).
X X

and then — assuming that limy_,, AVp(x) = 0 — solved forward to write

V(z,{pr, pr br>t) =/ [e_AVV(T_t)](:I:,:L‘")[/ Ay (z, o)A, (2")dz' + Ay, Ap, |dz"dr.
t X

Here, V(x,{ps, i+ }r>¢) represents the solution of the HJB given sequences of macro agreggates and

distributions from time period ¢t onwards. In equibrium,

AVt(«Tt) :V($7 {ﬁra HT}TZt)’
A‘A/t(pt) :V(:L’, {pra MT}TZt)‘

Because V is linear in the macro aggregates, the effect of an update can be expressed as
V(J?, {)\(pT - ﬁ)dt7 )‘(:U’T - ﬁT)dt}TZt) =
Adt / [e=Avv 0] (2, o) [ / Ay, @) [Dpir (a') — ATi, (@)da! + AvylAp, — Ap,]|da”dr
t x

= V(@ {pr, pr}r=t) = V(@ {D7 Bir brze)di
= MAVi(z) — AV (z))dt.
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Appendix B: Analytical RANK Example

A.7 Sequence space derivation of a simple RANK model

The following is the sequence space solution to the representative agents’ decision problem, give paths

of income y and interest rates r:

c = p/ e~ VPR, [y, dr — 7_1/ e~ TOPE, [r,)dr (33)
t t

where for the market to clear, y; = ¢; for the representative agent. Suppose monetary policy sets

re = e "y,

1. Rational expectations: Suppose E; = E;. Then if there are no further shocks to the economy,

v =p / e TPy dr — 57! / e 0P dr
t t

where

—kKt
— o) Tro€
o~ (pHR)T| _

p+K t p+r’

o oo oo
/ e~y dr = / e T Do dr = roe”t/ e~ (PR dr = ppeft
t t t

Meanwhile, setting G(t) = ftoo e~ (T=tpy_dr,

G'(t) = —y + pG(t)

such that - -
0=—y + p/ e~ TPy dr —y 71 / e 0P _dr
t t

G(t)

1 TOeim

G'(t) —
() p+K

=0.

Integrating both sides forward

/ G (s)ds — ' — / e "5 ds = 0
t t

pt+ K
1
= lim G(s) - G(t) =~" 0 Zent
S—00 ptEEK
G(t) = —y 110 Lot
ptEEK
Substituting this into the original expression,
G(t)
——
1o Lo 1 To -1_T70 (P ) —kt
= — —€ — e - — - + ]- €
ot P p+ KK 7 p+K 7 P+ KK
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1

ye=—y""—roe ™
K

2. Sticky info. Suppose a fraction A updates their beliefs about the macro environment per incre-
ment dt, such that du; = A(1 — py)dt where the fraction of households who have updated at time

tis uy = 1 — e . It further follows that (i, = Ae™*. Thus the average expectation is

Etfar] = (1 — p) 0) Hue 2

No Actual
update

Thus

Ey[zr] = ppw,
Note that pg = 0, lims_y0o ptr = 1. As A — 00, ur — 1, while A — 0 causes p; = 0.

3. Substituting this into (33),

Y = it [p / e Py dr — 47! / e_(T‘t)perT] .

t t

Differentiating with respect to time,

dye  dpe y d /OO —(r=t)p -1 /OO —(r—t)
- = — 4 rdT — P d
2t dtut+ﬂtdt P t e YrdT — 7y t e rrdr

d > >
— apt Yt + L [p <_yt + p/ e—(T—t)pde7_> _ ,.Y—l (_rt + p/ e—(T—t)PerT)}
dt py ¢ t .

dut Yy -1 > —(7—t)p -1 > —(7—t)p
=——+ Nt(_pyt + Tt) T PH P e YrdT — 7y € rrdr
t t t

Yt

Thus

dyy dpg 1 —1
A ey o RS
0 <dt " +( ut)p> Yo+ T

d - _
Note that %i = )\(Mift) = Apy ' —=1):

d A _
= (1 - ) <u+p) Y+ e
t

4. In the limit as p — 0,
dye  dpe 1

_— — -1 .
dt dt Mtyt Tt

oo dps 1

Write an integrating factor as el s, Multiplying both sides,

oo dus Lgs (dyr  dpg 1\ peedus 1gg g
e a dt dt Ntyt e A A2

oo dps 1
-]t s H—sds]

3 {yte
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. . dis
Solving out the integral, u = us, du = %2,

< dug 1 /1 1 _
—ds = —dus = lim log(us) — log(p:) = — log(p
[ = s = T loa(u) — lom(u) = —log()

such that

d |1 1
— | — = — Tt.
dt ,Utyt Iut’)’ KTt

Integrating from ¢ to oo, assuming lim,_,cc yr = O:

/ — <ys> dr = 7_1/ rdr
¢ ds \pr t
= 0——y =7 rrdT
Kt t

1 oo
Yye = =7 ,Ut/ rrdT
t

If r, = rpe™ "7, then
[o¢]
Yr = —71Mt/ roe” "Tdr
t

IR S
ye =~ p—roe ™
K

Substituting the definition of y; into the expression concludes the derivation.

A.8 Solving the Stable Subspace of Equation (25)

Start with equation (25):

IE; [dd] 0 vt o0 0 &
dr 0 —k 0 0 2
T _ K T dt
dy A0 =X Ayt 7
dr 0 A 0 —X—&||T

The eigenvectors of the system matrix can be collected into the change of bases matrices from (P)
and to (P~!) eigen coordinates, where the eigenvector columns correspond to the eigenvalues listed in

descending order:

(1 L 0 0]
1 1 0 0 i
_1
p— 0 —R7y 0 :>P_1: 0 YK 0 0
1 1 1 -1 -1 1 L
YK YR
0 —ky 0 —ry L 1
L0 5 0 7l
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Under the restriction that system dynamics are orthogonal to the zero eigenvector (such that the
system strictly returns to steady-state), the first row of P~! dotted with the state system must be

zero, such that

The updating households will switch to the full information IRF once they become aware of the shock.
The choice of y; will then correspond with the 7 expectations (after being updated for learning).

Eliminating the solved consumption choice of the updating households, I arrive at the stable system

dr —K 0 0 2
dy| = —)vy_l/fl . 7_1 c| dt
dr A 0 —-MN—=k| |7

With the control variable associated with updating agents substituted out, the system is in its stable
subspace; it is simply a system of linear ODEs with a known set of initial conditions. Integrating this

system forward (starting with interest rates, then expected interest rates, and then expected output),

¢ e rt 0 0 o
7| = —")/71%(67'% _ ef(AJrn)t) e~ _771%(67)\1} _ ef()\JrH)t) o
7 e—ht _ o—(AtR)t 0 e—(Atr)t 7o

Using the initial conditions that gy = 0 and 7y = 0,

1

- (e—At o e—(/\+n)t)r0‘

==

The linearized solution matches the closed form solution obtained with p = 0 exactly. Note that
7; (post updating) is equal to the actual realized y;; aggregate output is equal to the consumption

decisions chosen by all of the agents in the population, averaged over their beliefs.
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B Appendix C: Canonical HANK Model Parameters

The following parameters are used for the numerical solution presented in Section 4.2.

Table 1: Numerical Solution: HANK Model Parameters

Parameter Symbol  Value Source or Target
Households
Internally Calibrated:
Quarterly Time Discounting o 0.021 r = 2% Annually
Idiosyncratic Income Shock Variance o2 0.017 Floden and Lindé (2001)
Idiosyncratic Shock Mean Reversion 0. 0.034  Floden and Lindé (2001)
Assumed from Literature:
Relative Risk Aversion ¥ 2.0 McKay et al (2016)
Frisch Elasticity of Labor n 0.5 Chetty (2012)
Labor Market
Labor Elasticity of Substitution €L 10 Philips Curve slope of 0.07
Rotemberg wage adjustment cost 0w 100  Philips Curve slope of 0.07
Government
steady state government debt Bnss 2.63 HANK :MPCy ~ 0.40
Geometric maturity structure of debt w 0.043  Avg. maturity of 70 months
Income Tax Rate T 0.25
Taylor Rule Coeflicient br 1.5 Active monetary policy
Fiscal Debt Coefficient K 0.10 Passive fiscal policy
Shocks
Mean reversion of fiscal shocks OTax 1.0

35



	Introduction
	Literature Review

	Converting FIRE models to Sticky Expections
	Setup
	Households in the Interior
	The Average-Belief Household
	The Average-Belief Value Function
	Sticky Expectations in Continuous Time

	The Distribution of Agents (and Households on the Boundary)
	Aggregation
	Full Information Households
	A two-part problem
	The mean belief household solution
	Full information households and updating


	Linearized Solution
	Examples
	A toy representative agent example
	A Canonical HANK model
	Abridged setup
	Simulation results


	Conclusion
	Appendix to Section 2: Derivation Proofs
	Proposition 2.1: Derivation of the HJB Equation for i-Belief Households
	Sticky mean expectation evolution
	Proof of 2.3: Characterizing the household choices averaged over beliefs
	Proof of Proposition 2.6
	Proof of Proposition 2.7
	Proof of Proposition 2.8: Average belief value function updating
	Sequence space derivation of a simple RANK model
	Solving the Stable Subspace of Equation (25)

	Appendix C: Canonical HANK Model Parameters

