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Abstract

Full information rational expectations heterogeneous agent models can be easily converted into

a sticky expectations environment, even when solved in state-space form. The technique recycles

the Jacobians of the full information model with only a few modifications. The process is greatly

simplified by working in continuous time, which facilitates the use of natural boundary conditions

to ensure agents do not violate idiosyncratic borrowing constraints and the measure of updating

agents at any given moment is zero. After solving the full information model, the conversion to

sticky expectations takes only a few additional lines of code.

1 Introduction

Deviations from full information rational expectations (often abbreviated as FIRE) are qualitatively

and quantitatively important for understanding business cycles and are often necessary to reconcile

heterogeneous agent New Keynesian (HANK) models with macroeconomic data. In this supplemental

paper to Kwicklis (2025b), I develop a new technique to expediently convert the linearized state-

space Jacobians of a full information HANK continuous time system into their sticky expectation

counterparts, wherein only a fraction of agents update their beliefs about the macroeconomy to full

information at any moment in time. Kwicklis (2025b) then demonstrates an empirical application of

the procedure.

Several factors allow my numerical method to offer an expedient solution by recycling FIRE Ja-

cobians. First, the machinery of continuous time naturally handles the interior and boundary of the

state-space separately via partial differential equations (PDEs) and their accompanying boundary

conditions, which ensure that agents do not violate borrowing constraints and similar restrictions.

Second, as explained in Guerreiro (2023), only the average beliefs of the households in the standard

sticky information setting matter for aggregate allocations.

As such, my first step is to solve the linearized problem for a household with average beliefs about

the macroeconomy, given that the average household treats its beliefs (to first order) as the true

future when calculating its value function and forming its plan for its control variables. Additionally,

in continuous time, only a vanishing measure of households update their beliefs to full information in

any given moment, so updates only lead the average belief (and the average behavior it induces) to

drift, not jump. Information updates can therefore be incorporated entirely as additive drift terms.

Lastly, the average belief value function can be parsimoniously updated using the value functions

1First draft: July 20, 2025.
2I thank Lee Ohanian, Pierre-Olivier Weill, João Guerreiro, Andrew Atkeson, and Saki Bigio for their feedback and

comments.
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of full information households, as both solve the same partial equilibrium decision problem, just for

different (incorrect and correct) sequences of forecasted prices.

I briefly survey related work on HANK models and departures from FIRE in the literature review.

In Section 2, I describe the layout of a broad class of sticky expectation HANK models and the

mathematical arguments that justify my solution technique. In Section 3, I detail the simple matrix

manipulation that implements my methodology. In Section 4, I show that my strategy yields the

correct analytical solution for a simple representative agent New Keynesian model that can be solved

via pen-and-paper, and that my state-space numerical solution matches the sequence-space approach

described in Auclert, Rognlie, and Straub (2020) for a canonical HANK model. Section 5 concludes.

1.1 Literature Review

Several approaches for handling non-FIRE HANK models already exist in the literature, but my

methodology offers a flexible and powerful alternative to existing methods. In a seminal paper that

merges HANK with sticky expectations, Carroll et al. (2020) use a Krusell and Smith (1998) approach

to solve a simple state-space HANK model by tracking the entire distribution of infrequently-updating

household expectations. They then demonstrate that their simulated model replicates the empirically

observed sluggish response of household consumption to macroeconomic events. However, the authors

deliberately keep their model simple due to the computational complexity and rely on specific para-

metric forms for the utility function and the budget constraint, which my approach does not require.

In contrast, Kwicklis (2025b) uses my methodology to solve and estimate more complicated HANK

models that are realistic enough for real-time forecasting.

Auclert, Rognlie, and Straub (2020) demonstrate how to conduct a similarly convenient conver-

sion from FIRE to sticky expectations using the sequence-space Jacobian (SSJ) approach of Auclert,

Bardóczy, et al. (2021). Like my conversion, their technique also requires only a few small changes

to the computation. In Section 3, I provide a numerical example of a canonical HANK model solved

with sticky expectations in both my state-space form and in a continuous time variation of their

sequence-space methodology. Both approaches generate similar impulse response functions up to a

reasonable approximation error. However, while the SSJ framework is a powerful tool, some applica-

tions may still be more easily handled in state-space. First, there is a matter of ease of implementation:

the SSJ framework involves chaining derivatives across sometimes very complicated directed acyclic

graphs. Secondly, determinacy and uniqueness of a stationary solution can be difficult to assess in

sequence-space,3 but are straightforward to assess with the Blanchard and Kahn (1980) methodology

in state-space. Thirdly, state-space models sometimes offer advantages for estimation and inference;

state-space models can be easily adapted for measurement error, missing data, and changes in the

model’s governing equations, while a smaller ecosystem of tools is currently available for in sequence-

3Most sequence-space determinacy checks involve the use of Onatski (2006) winding criteria and the approximation
of the solution with a state-space model. Auclert, Rognlie, and Straub (2023) use the quasi-Toeplitz structure as of
the sequence-space Jacobians to approximate their model after a large number of time periods to assess determinacy.
Hagedorn (2023) assumes households decisions only depend on aggregate states instead of the full distribution, making the
dimension-reduced sequence-space model exactly Toeplitz. However, neither approach directly evaluates the stationarity
of the model of interest – only a distant future or dimension reduced approximation.
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space. As per Auclert, Bardóczy, et al. (2021), filtering of shock processes is also more theoretically

straightforward in state-space than sequence-space. Moreover, state-space models are still widely used

by central banks and other institutions (see Acharya et al. (2023) for a HANK example). As such, my

methodology provides a recursive state-space alternative to bring non-FIRE expectation structures

into HANK settings.

My approach naturally builds off of previous work on solving FIRE state-space HANK models. In

my HANK numerical example, I repeatedly employ a continuous time analogue of the approach used

in Bayer and Luetticke (2020) to solve for the systems’ FIRE Jacobians. Their approach – based on

Reiter (2009) – reduces the dimensionality of the heterogeneous agent problem using a discrete cosine

transformation for the households’ value function and a copula for the distribution of households. Ahn

et al. (2018) is also relevant, as it explains perturbation solutions in continuous time HANK models

more broadly. Researchers interested in estimating continuous time models from discretely sampled

data should further consult Christensen, Neri, and Parra-Alvarez (2024), which provides a guide for

properly integrating continuous time equations to discretized measurements of stocks and flows.

In the numerical HANK example, I also draw upon the continuous time tools of Achdou et al.

(2021) to calculate the model’s non-stochastic steady-state. The model itself is a variation of the one

solved in Kwicklis (2025a), but under an active monetary/passive fiscal policy mix, as is conventional

in the New Keynesian literature.

2 General Framework

Time is t ≥ 0 is continuous. Households are ex-post heterogeneous and know the vector of their

idiosyncratic state variables xt ∈ X with full information. These state variables are assumed to evolve

via a standard stochastic differential equation with the law of motion

dxt = f(xt, ct, pt)dt+ σx(x)dWt

where ct is the vector of the household’s choice of controls, pt is a vector of macroeconomic variables

outside of the individual household’s control (like prices or inflation), f is the law of motion governing

the state variable’s deterministic drift, and σx(x) is a diagonal matrix through which an independent

vector of Brownian motionsWt feeds back into the state equations.4 Note that f is itself vector-valued;

if fi depends on c, then the coordinate xi is an endogenous idiosyncratic state variable. If not, then

xi is an exogenous idiosyncratic state variable.

In addition, I assume that idiosyncratic dynamics must satisfy a boundary condition along at least

one of its dimensions:

xj,t ≥ x.

For simplicity, I assume that σx,j,j(x) = 0 if xj,t = x, such that endogenous idiosyncratic states with

a boundary constraint do not evolve with a stochastic diffusion term on the boundary ∂X .

4Naturally, the logic in this text can accommodate other kinds of random processes for the state variables, like Poisson
jump processes.
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Households plan to choose control variables to maximize their expected discounted utility. In

contrast to full information rational expectations, however, the household uses its beliefs (indexed by

i ∈ I with CDF Γ(i)) about the macroeconomy to forecast the macroeconomy’s evolution and its

impact on its decision problem, which may or may not be correct. The perceived problem is:

V i
t (xt; pt, µt, p

i
t, µ

i
t) = max

(ciτ (xτ ,pτ ,µτ ))τ≥t

Ẽi
t

∫ ∞

t
e−(τ−t)ρu(cτ )dτ

s.t. Ei
t[dxt|dWt] = Ei

t[f(xt, ct; pt)dt] + σx(x)dWt,

Ei
t[∂tµt] = Ei

t[D∗
t (V, p)[µt](x)]

Ei
t[dpt]

dt
= Ei

t[g(µt, pt)]

xjt ≥ x ∀t ≥ 0

(1)

where D∗(V, p) is the true infinitessimal generator for the Kolmogorov Forward equation (KFE) of the

distribution µ, while g is the true law of motion for aggregates p. Ẽi is the expectation taken with the

subjective probability measure of a household with belief i at time t. Here, pit ≡ Ẽi
t[pt] and µ

i
t ≡ Ẽi

t[µt]

Although households may have incorrect beliefs about the trajectory of prices, they only use those

incorrect beliefs for forecasting and constructing their value function V i
t . For the first-order conditions

that arise from their decision problem in the interior X \ ∂X , I assume households plug the actual pt

into their choices at time t, such that

cit(x) = h(x, V i
t , pt).

These consumption choices and contemporaneous prices are assumed to have no impact on the house-

hold’s value function forecast. Similarly, I assume that households on a boundary ∂X with xj,t = x

choose consumption according to

fj(xt, h(V
i
t , pt), pt) = 0.

This is tantamount to a sequence of boundary constraints for the value function over time. In later

sections, I show that this boundary condition is implied by a “mass-preserving” KFE infinitessimal

generator and does not need to be imposed directly.

As in the sticky information framework of Caroll et al (2020) and Auclert et al (2023) (MJMH),

households in each moment either update to full information about the aggregate system or not at all

for the purpose of constructing V i
t . They do so with a constant, independent Poisson intensity λ; in

an infinitessimal increment of time, a random λdt mass from the cross section of households updates

to full information.

While households are able to reason through the dynamics of g given their beliefs about its inputs,

I assume that the p equations follow the general structural relation

Qdpt = q(µt, pt, {h(V i
t , pt)}i∈I)dt. (2)

If Q is invertible, then g = Q−1q. In other cases some rows of Q are entirely zero, such that the
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equation denotes a static fixed point relationship for which g is a solution. In this way, equation

(2) encompasses the dynamics of macroeconomic jump variables (like inflation), macroeconomic state

variables (like the capital stock), and static variables (like prices).

2.1 Households in the Interior

I consider the interior X \ ∂X and ∂X separately, as in the former case the i-indexed beliefs affect

households’ decisions, while in the latter they do not. Working with the two cases separately is

straightforward in continuous time, as the recursive Hamilton Jacobi Bellman (HJB) equation describes

only the state-space’s interior.

Discretizing the value function (1) in with infinitessimal time increments dt, the analogue to the

discrete time value function is

V i
t (xt; pt, µt, p

i
t, µ

i
t) = max

(ciτ )τ≥t

u(cit)dt+ e−ρdtẼi
tV

i
t+dt(xt+dt, pt+dt, µt+dt, p

i
t+dt, µ

i
t+dt)+

s.t. Ei
t[dxt|dWt] = Ei

t[f(xt, c
i
t; pt)] + σx(x)dWt, ṗ

i
t = Ei

t[g(µt, pt)], ∂tµ
i
t = Ei

t[D∗
t (V, p)µt]

where conditioning on the subjective pi, µi, the evolution of p, µ is irrelevant for the household’s

decision problem (although the level is still relevant).

Proposition 2.1. The Hamilton Jacobi Bellman (HJB) equation for x ∈ X \ ∂X takes the form

ρV i
t (xt; pt, µt, p

i
t, µ

i
t) =max

c̃it

{
u(c̃it) +∇xV

i
t (xt; pt, µt, p

i
t, µ

i
t)

′Ei
t[f(xt, c

i
t; pt)] +

1

2
tr(σx(x)σx(x)

′∇2
xV

i)dt

+∇pV
i
t (xt; pt, µt, p

i
t, µ

i
t)

′Ẽi
t[g(p, µ)] +

∫
X
δµ(x′)V

i
t (xt; pt, µt, p

i
t, µ

i
t)Ẽi

t[D∗
t (V, pt)µt(x

′)]dx′
}
.

(3)

Here, I write δµ(x′)F (x) as a shorthand for δF (x)
δµ(x′) , the functional (Frechét) derivative of F (x) with

respect to µ(x′).

Proof. See Appendix A.1.

Definition 2.2. I define a non-stochastic steady state as one in which the value function no longer

explicitly depends on time, and the macroeconomic variables µ, p are equal to their expected values

across the entire economy and are no longer changing. All households have the correct belief, while

ṗ = 0 and ∂tµt = 0.

Up to a first-order approximation in the macroeconomic variables around the non-stochastic steady

state, the household will treat its forecast for prices and the distribution as if they are the true prices

and distribution, as in Carroll et al. (2020). As such, I can write the HJB as a function of pit and µ
i
t

alone:

ρV i
t (xt; p̃

i
t, µ̃

i
t) =max

c̃it

{
u(cit) +∇xV

i
t (xt; p̃

i
t, µ̃

i
t)
′f(xt, c

i
t; p̃

i
t)

+∇piV
i
t (xt, p̃

i
t, µ̃

i
t)
′g(p̃it, µ̃

i
t)

+

∫
X
δµi(x′)V

i
t (xt; p̃

i
t, µ̃

i
t(x

′))D∗
t (V

i
t (x

′), p̃it)µ̃
i
t(x

′)]dx′
} (4)
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Note that the dependence of the value function on i is entirely through the expected aggregates

pi and µi, while actual p and µ do not affect the problem. The interior household will plan to

choose consumption to maximize its expected utility only using its subjective beliefs about prices, the

distribution, and other macro aggregates. Assuming that the optimization problem is concave, the

household’s planned control choice will thereby satisfy

∇u(c̃it) = −∇xV
i
t (xt; p̃

i
t, µ̃

i
t)
′∂cif(xt, c̃

i
t; p̃

i
t).

For many problems, the budget constraint can be rewritten so that the household chooses only a

numeraire consumption good, as in Caroll et al (2020). In such cases, c can be written entirely in

terms of ∇xV
i. In more complicated settings, however, one could consider cases with variable control

prices that the consumer is able to observe (but does not use to update their forecast). The consumer

actually choose ci such that

∇u(cit) = −∇xV
i
t (xt; p̃

i
t, µ̃

i
t)
′∂cif(xt, c

i
t; pt),

which equates the instantaneous value of the control with its perceived opportunity cost (e.g. the

value of consumption with the subjective value of the savings given actual present prices). If pt does

not change the consumption plan, however, it still does not enter into the forecast of V i
t . Rather,

actual pt only enters into how the distribution is updated.

I denote this control variable choice that satisfies the FOC

cit(xt; pt, µt, p̃
i
t, µ̃

i
t) = h

(
V i
t (xt; p̃

i
t, µ̃

i
t), pt

)
.

2.2 The Average-Belief Household

At this stage, it is useful to define an agent with average beliefs about the state of the macroeconomy.

This agent does not actually exist; in the model, households either have full information or don’t

following a macroeconomic shock. Still, the construct is useful, as the average agent will behave as

if the average beliefs about prices are the true dynamics, and their value function can be used to

determine the average choices in the economy at every point in the idiosyncratic state-space X . To

see why this is useful and convenient, I show that in a first-order expansion, only the average belief

matters for the households’ aggregate control variables, as Guerreiro (2023) argues in a sequence-space

setting.

From there, I derive the evolution of average beliefs under sticky expectations in continuous time.

The result is a system of intuitive and tractable differential equations that are straightforward to add

to the model.

2.2.1 The Average-Belief Value Function

Recall that the economy is populated with agents who have beliefs indexed by i about macroeconomic

states like the distribution µ and prices and aggregates p, and denote this subjective probability
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density ψ̃i
t. Subjective expectations about a macroeconomic random variable Y are calculated with

the subjective measure:

Ẽi
t[Y ] ≡

∫
S
yψ̃i

t(y)dy

Let the measure of housholds with belief i be Γ(i). Define the average belief about a macroeconomic

variable Y as

Et[Y ] ≡
∫
S
yψt(y)dy

where ψt(y) ≡
∫
i ψ̃i(y)dΓ(i) is the average agent’s belief about the PDF of Y at time t. Just like p̃i

and µ̃i were calculated using the i probability measures, I similarly define pt and µt as the average

beliefs about the macroeconomy:

pt ≡ Et[pt], µt ≡ Et[µt].

Define the “expectations-averaged” value function over the entire population before any agents update

their beliefs as

ρV t(xt; pt, µt) =max
ct

{
u(ct) +∇xV t(xt; pt, µt)

′f(xt, c; pt)

+∇pV t(xt; pt, µt)
′g(pt, µ̃t) +

∫
X
δµ(x′)V t(xt; pt, µt)D∗

t (V t, pt)[µt](x
′)dx′

}
s.t. xj,t ≥ x ∀t

(5)

The value function is simply the preceding agents’ value function, but specifically using the average

belief about macroeconomic variables.

Proposition 2.3. As in Guerreiro (2023), the value function averaged over beliefs V t and actual prices

and aggregates pt characterize the average control variable choice given the households’ idiosyncratic

states to first order. In other words, in a neighborhood around the non-stochastic steady-state with

deviations thereof denoted by ∆,

h(V t, pt) =

∫
i
cit(x; p, µ, p

i, µi)dΓ(i) +O(∥∆p2,∆µ2, (∆pi)2, (∆µi)2∥).

Proof. See Appendix A.3.

2.2.2 Sticky Expectations in Continuous Time

For a random variable that is changing over time, the total change in the average forecast over time

will be
d

dt

(
Et[Yt+s]

)
=

d

dt

(∫
Ω
yt+s(ω)ψt(ω)dω

)
=

∫
Ω
ẏt+s(ω)ψt(ω)dω︸ ︷︷ ︸
Subj. Forecast

+

∫
Ω
yt+s(ω)∂tψt(ω)dyt︸ ︷︷ ︸

“Gain”

= Et[Ẏt+s] +
dE
dt

[Yt+s]
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This structure has a Kalman Filter-like intuition: the agents’ ex-post belief about a macroeconomic

variable For a sticky-information environment like the one detailed in Mankiw and Reis (2002), Carroll

et al. (2020), Auclert, Rognlie, and Straub (2020), and many others, the average belief is:

Et[Yt+s] =

∫ ∞

0
λe−λτEt−τ [Yt+s]dτ.

Differentiating with respect to t, I show in the Appendix A.2 that the average expectation then follows

d

dt
Et[Yt+s] = Et[∂tYt+s] + λ

(
Et[Yt+s]− Et[Yt+s]

)
.

Crucially, when a household updates from stale beliefs about the macroeconomy to full information,

they do not just update their forecast for the variable at time t. Rather, they update their entire

sequence of forecasts for the entire future, such that the update takes the form of an entire sequence

of revisions{
λ(Et[Yt+s]− Et[Yt+s]), s ≥ 0

}
.

While the change in the entire forecast sequence is crucial for proper updating, I later show that it

suffices to track just the zero-horizon forecasts for macroeconomic variables. For prices and aggregates

pt in the economy and the distribution µt, I define the zero-horizon expected values

pt ≡ lim
dt→0

Et[pt+dt]

µt ≡ lim
dt→0

Et[µt+dt].

The zero-horizon forecasts will then evolve according to

dpt
dt

= Et[∂tpt] + λ(pt − pt)

dµt
dt

= Et[∂tµt] + λ(µt − µt)

where the first term of each expression is the agent’s perceived belief of how prices and the distribution

evolve before new information updates agents’ forecasts. In other words, to first order the average

belief is updated as follows:
dpt
dt

= g(pt, µt, V ) + λ(pt − pt) (6)

∂tµt(x) = D∗
t (V , p)[µt](x) + λ(µt(x)− µt(x)) (7)

2.3 The Distribution of Agents (and Households on the Boundary)

Up to this point, I have referenced the D∗ infinitessimal generator; I now define it explicitly and discuss

how it implicitly enforces the boundary constraints referenced in the Overview section. Consider the

average value function V that induces consumption choices according to the first-order conditions

ct(x; pt, pt, µt) = h(V t(x; pt, µt), pt). For an agent on the boundary ∂X , e.g. at a borrowing constraint,
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the appropriate boundary condition on V to describe the agent’s behavior is

fi(x, h(V t, pt); pt, µt) = 0 if xi = x (7.5)

such that Vt(x), x ∈ ∂X satisfies the above implicit relationship. (Technically, this constraint should

hold for every V i
t , but only V is computationally important). In the particular context of a borrowing

constraint, the above implies that the household consumes exactly its income when its assets are zero

– such that the asset state variable does not drift past the constraint.

To enforce the appropriate sequence of boundary conditions on the HJB relationship, one need

only ensure that the distribution µ whose mass starts within X stays within X .

First, note that the evolution of the distribution of households with the value function V may be

expressed via a standard Kolmogorov Forward Equation (KFE)

∂tµt(x) = −∇x · (f(x, h(V t, pt); pt)µt(x)) +∇2tr
[
(σ(x)σ(x)′µt(x))

]
(8)

given the σ(x) diffusion matrix is diagonal. Equation (27) depends on the actual prices and the actual

distribution. Expectations about prices only enter into the households’ value function V , which may

reflect some more complicated information or belief structure. This equation can be more compactly

represented with the KFE infinitessimal generator operator D∗, such that

∂tµt = D∗(V t, pt)[µ](x).

Definition 2.4. Define the KFE operator’s kernel D∗(V, p)(x, y) : X × X → R such that

D∗(V, p)[µ](x) =

∫
X
D∗(V, p)(x, x′)µ(x′)dx′.

Definition 2.5. A KFE infinitessimal generator D∗ : F [X ] → F [X ] is mass-preserving if its kernel

satisfies ∫
X
D∗(V, p)(x, x′)dx = 0 ∀x′ ∈ X .

By analogy, let d∗ = [d∗i,j ] be a matrix finite difference approximation the kernel of D∗(V, p), e.g.

D∗(V, p)(x, y). d∗ will be mass-preserving if all of its columns sum to zero, such that:∑
i

d∗i,j = 0.

Proposition 2.6. Suppose the economy starts in its non-stochastic steady state when a macroeconomic

shock occurs. If the KFE generator is mass-preserving, then the value function of households at the

boundary will satisfy equation (7.5).

Proof. See Appendix A.4.

The proof goes roughly as follows: if the KFE operator is mass-preserving, then the net flux across

the boundary defined by the state constraints must be zero for all time. If all the probability mass
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starts within or on the boundary of the space, then no mass crosses the boundary, and so probability

mass exactly on the boundary must be traveling tangent to it. This tangent motion is equivalent to

the value function satisfying equation (7.5).

Tracking the evolution of the distribution with a mass preserving KFE operator therefore naturally

imposes a time-varying boundary condition for the value function that depends on the realization of

actual aggregates. For example, if households are unable to borrow and are at a constraint of 0 assets,

they will consume a maximum of their current income, regardless of their beliefs.

For most applications involving a first-order perturbation solution, the mass-preserving KFE gen-

erator will indeed be mass-preserving.

Proposition 2.7. If the KFE infinitessimal generator D∗(V, p) is a first-order perturbation of the

steady-state one with respect to macroeconomic variables, then it will be mass-preserving if the Jaco-

bians evaluated at the steady-state are mass-preserving.

Proof. See Appendix A.5.

The result follows immediately from the linearity of the operators. In effect, if the perturbation

solution enforces the correct idiosyncratic constraints in the FIRE case via the KFE operator, it will

also enforce the correct constraints in the non-FIRE case along the boundary.

2.4 Aggregation

Because the average belief value function determines the value of average controls conditional on the

idiosyncratic state-space point in the state-space, V will also be sufficient to characterize macroeco-

nomic aggregates. Aggregate controls will then be

Ct =

∫
X
h(V t, pt)µt(x)dx

such that the aggregate variables will depend on the actual measure of individuals given their choices

derived from the average expectations. Similarly, aggregate states can be computed as

Xt =

∫
X
xµt(x)dx.

As such, the actual pt in the economy will evolve with the true distribution µt, the true pt, and the

subjective belief-averaged V t:

Qdpt = q(µt, pt, h(V t, pt)dt. (9)

2.5 Full Information Households

Every period, a mass λdt mass od new households becomes full information. It’s necessary to track

these households as well, as they become a greater and greater share of the population over time (and
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thus have a greater and greater effect on the average). Define the full information value function as

ρV̂t(xt; pt, µt, pt, µt, V t) =max
ct

{
u(ct) +∇xV̂t(xt; pt, µt, pt, µt, V t)

′f(xt, ct; pt)

+∇pV̂ (xt; pt, µt, pt, µt, V t)
′E[dpt]
dt

+

∫
X
δµV̂t(xt; pt, µt, pt, µt, V t)∂tµtdx

+∇pV̂ (xt; pt, µt, pt, µt, V t)
′dpt
dt

+

∫
X
δµV̂t(xt; pt, µt, pt, µt, V t)∂tµtdx

+

∫
X
δV V̂t(xt; pt, µt, pt, V t)∂tV tdx

}
.

(10)

V̂ uses the true law of motion for prices – given the actual prices and the mean beliefs across the

economy, and the belief-averaged value function V , which influences average choices. A rational full

information household thus forecasts 1) their idiosyncratic state variables’ evolution, given the true

prices, 2) the evolution of those prices, given the true distribution of agents and their average choices

(encapsulated by average belief V ), 3) the evolution of the total distribution, 4) the evolution of

expected prices and 5) expected distributions for the average household, and 6) the average value

function (and therefore decisions) of the average agent in the economy, which when combined with

the true distribution is used to formulate a forecast for prices.

Altogether, equations (5-10) nearly describe how the system evolves for the purposes of calcu-

lating macroeconomic and microeconomic (but expectations-averaged) variables, but with a caveat:

equation (5) is incomplete, and only models the average household dynamics if the composition of

households did not change. With a probability λdt, a household is uniformly selected (after choosing

their consumption) to update their beliefs about the macroeconomic variables to full information. As

such, V should evolve according equation (5) – but with an additional λ(V̂t − V ) that the average

household does not anticipate or plan for in their optimization problem. I discuss how to incorporate

this adjustment into the dynamics in the next section.
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2.6 A two-part problem

To solve the model, one can solve for two different stable manifolds (subspaces in the linearized model),

consecutively. First, one can solve for the behavior of the fictitious average agent to determine the

evolution of V . Then, one can solve the full information households’ problem, taking the average agent

as a state variable (and where the full information agents internalize how they will update the average

agent over time).

2.6.1 The mean belief household solution

First, consider the perceived problem of the fictitious average household. For a given household, the

value function may be concentrated to have an explicit time dependence, such that it represents the

choices of the household for a given sequence of macroeconomic aggregates. Denoting the drift of the

macroecomic variables ∂tV (xt), one can write

∂tV (xt) = ∇pV t(xt; pt, µt)
′g(pt, µ̃t) +

∫
X
δµV t(xt; pt, µt, pt, µt)D∗

t (V t, pt)[µt]dx.

By subsuming the macroeconomic variable dependence into the value function, the decision problem

or “partial equilibrium” value function is then

ρV t(xt) =max
ct

{
u(ct) +∇xV t(xt)

′f(xt, c; pt)

}
+ ∂tV (xt)

s.t. xt ≥ x ∀t
(11)

where

∂tµt = D∗
t (V t, pt)µt, (12)

Q
dpt
dt

= q(µt, pt, V t). (13)

This system exactly resembles the FIRE system – except with expected prices in lieu of the real

ones. The reason for this is that the average expectation agent believes that their forecast of prices is

correct (or at least, on average correct in a certainty equivalent setting).

The concentrated HJB can then be linearized around the non-stochastic steady-state with respect

to the macroeconomic variables as

∂t∆V (xt) =

∫
X
AV V (x, x

′)∆V t(x
′)dx′ +

∫
X
AV µ(x, x

′)∆µt(x
′)dx′ +AV p(x)∆pt +O([...]2). (14)

The A operators denote the partial equilibrium Jacobians of the household’s concentrated HJB with

respect to its own value function and the average beliefs about prices and the distribution evaluated

in the non-stochastic steady state. In other words,

AV V (x, x
′) = ρδ(x− x′)− δ

δv(x′)

[
h(v(x)) +∇xv(x)

′f(x, h(v(x)); p)

]
,
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AV µ(x, x
′) = − δ

δµ(x′)

[
h(v(x)) +∇xv(x)

′f(x, h(V ); p)

]
(= 0).

AV p(x) = −∇xv(x)
′ ∂

∂p
f(x, h(v); p).

where δ(x − x′) is a Dirac-delta function and δf(x,g(x))
δg(x′) refers to the functional (Frechét) derivative

of f with respect to g. Note that in the steady-state, actual and expected prices are equal and all

households have the same value function v(x); these Jacobians are exactly the same as their FIRE

counterparts.

Suppose the average household’s perceived problem can be solved for the value function’s dynamics

on the stable manifold, such that for a sequence of beliefs about prices and the distribution, the value

function will satisfy (at least, under the household’s average beliefs)

Et[∂t∆V (xt)] =

∫
X
BV V (x, x

′)∆V t(x
′
t)dx

′ +

∫
X
BV µ(x, x

′)∆µt(x
′)dx′ + BV p(x)∆pt +O([...]2).

The forecasts of the expected household (prior to updating) will also be

Et[∂t∆µt(x)] =

∫
X
BV µ(x

′)∆V t(x
′
t)dx

′ +

∫
X
Bµµ(x, x

′)∆µt(x
′)dx′ + Bµp(x)∆pt +O([...]2)

Et[∂t∆pt] =

∫
X
BpV (x, x

′)∆V t(x
′
t)dx

′ +

∫
X
Bpµ(x

′)∆µt(x
′)dx′ + Bpp∆pt +O([...]2)

In the actual economy, however, the average beliefs are updated with the realizations of the actual

pt and µt. Unfortunately, this is slightly complicated by the fact that learning at time t updates

the whole forecast sequence of (pτ , µτ )τ≥t, not just their contemporaneous values. To see why this is

important, consider integrating forward equation (14), with the assumption that limt→∞∆Vt(x) = 0.

Using the partial equilibrium Jacobians and treating the linear operators analogously to matrices, the

value function becomes:

∆V t(x) =

∫ ∞

t

∫
X

[
e−AV V (τ−t)

]
(x, x′′)

[ ∫
X
AV µ(x, x

′)∆µτ (x
′)dx′ +AV p∆pτ

]
dx′′dτ.

where the exponential operator is
[
e−AV V t

]
(x, x′) is the kernel equivalent to a matrix exponential.5 An

update results in a change to the value function that takes the entire future path of the new forecast

into the account – a complicated object. Fortunately, there’s a simpler approach: use the present

values already calculated in the value functions of the full information agents.

2.6.2 Full information households and updating

Consider the full information agent’s decision problem, given a sequence of macro aggregates and the

behavior and beliefs of other agents in the economy (e.g. V , µ, p). By concentrating equation (10),

5More explicitly,
[
eAV V t

]
(x, x′) ≡ δ(x− x′) +

∑∞
n=1

tn

n!
A(n)

V V (x, x′),

where A(n)
V V (x, x′) ≡

∫
X · · ·

∫
X AV V (x, x1)AV V (x1, x2)(. . . )AVV(xn−1, x

′)dx1 . . . dxn−1.
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the full information value function is

ρV̂t(xt) =max
ct

{
u(ct) +∇xV̂t(xt)

′f(xt, ct; pt)

}
+ ∂tV̂ (xt)

s.t. xt ≥ x ∀t.
(15)

Now, however, the sequence of actual prices evolve using the average value function (which character-

izes average household actions) and the actual distribution, along with actual prices and the actual

distribution.

∂tµt = D∗(V t, pt)µt

Qṗt = q(µt, pt, V )

The full information rational agent knows that the other agents will learn over time. The law of motion

for the average macroeconomic beliefs is the solution to the non-updating household’s problem, but

modified for the λdt measure of agents that update using the true values. As such,

d∆pt
dt

= Et[∆∂tpt] + λ(∆pt −∆pt) (16)

∂∆µt
∂t

= Et[∂t∆µt] + λ(∆µt −∆µt) (17)

where Et[∂t∆pt] and Et[∂t∆µt] are the solutions from the average expectation block. By analogy, one

could reasonably guess:
∂∆V t

∂t
= Et[∂t∆Vt] + λ(∆V̂t −∆V t)

where Et[∂tVt] is again the solution from the average belief households’ problem. This turns out to be

correct, as per the following proposition:

Proposition 2.8. To a first-order approximation, the average belief household updates its value func-

tion with a constant factor of λ(∆V̂ −∆V ).

Proof. See Appendix A.6.

The intuition behind the result is straightforward: although rational expectations households and

non-updating households have very different information sets, both solve essentially the same partial

equilibrium decision problem when planning their consumption, just with different beliefs. The value

functions themselves are linearized with respect to those beliefs, so the effect of a change in a sequence

of beliefs is equal to a difference between value functions.

One could also think about the intuition in a slightly different, but equivalent, way: as time

progresses following a time-zero shock, the mass of households who have updated grows at a rate of

λ per unit of time, while the mass who think they are still in the steady state shrinks at the same

rate. This pulls the overall average belief households toward the full information ones at a rate of λ,

as more and more FIRE households become averaged into the entire population.
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3 Linearized Solution

The preceding section described the linearized solution in a more abstract functional form. To actually

calculate the solution on the computer, one discretizes the functions onto grids as described in Achdou

et al (2020). Functions become vectors, while integrals becomes sums.

Altogether, the process can be summarized in three steps:

1. Solve the full information rational expectations model:

ρVt(xt) =max
ct

{
u(ct) +∇xVt(xt)

′f(xt, ct; pt)

}
+ ∂tVt(xt)

s.t. xt ≥ x ∀t
(18)

∂tµt = D∗
t (pt, Vt)µt

Qṗt = q(µt, pt, Vt)

2. Construct the solution to the average belief households’ problem in the absence of updating.

This is simply the FIRE solution, but with the subjectively expected variables instead of the

true ones. The new system describes Et[∂tVt], Et[∂tµt], and Et[∂tpt].

3. Solve the full information households’ rational expectations problem given the average behavior

of the other agents, accounting for how the average information agent updates.

In what follows, I assume knowledge Bayer and Luetticke (2020) and Ahn et al. (2018), which

are in turn based on the methodology of Reiter (2009). After discretizing the value functions and

distributions over a grid, one may solve for the non-stochastic steady-state. Thereafter, one constructs

a first-order perturbation of the economy from that steady-state due to aggregate shocks. The A and B

block matrices are essentially the discretized matrix representations of the A and B terms introduced

earlier in the text. I also dispense with the ∆ notation; V , µ, and p in this section are all discretized

vectors that represent deviations from the non-stochastic steady-state.

First, one starts with the FIRE Jacobians for equation (18):I 0 0

0 I 0

0 0 Q


E[dV ]

dµ

E[dp]

 =

AV V AV µ AV p

AµV Aµµ Aµp

ApV Apµ App


Vµ
p

 dt, (19)

If the Blanchard and Kahn (1980) conditions are satisfied, one can solve the system as in Sims

(2002) using a generalized Schur decomposition to determine its dynamics on its stable manifold – the

stable subspace in the linearized, discretized model. The solved rational expectations model is thendVdµ
dp

 =

BV V BV µ BV p

BµV Bµµ Bµp

BpV Bpµ Bpp


Vµ
p

 dt. (20)

Once again, the Bij matrices represent the Jacobians of the equilibrium system, restricted to the stable

subspace.
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Before any updating occurs, agents behave with the belief that the feedbacks of the system are in

the stable subspace spanned by the B system in the absence of shocks. Over time, however, households

are awakened with a Calvo Poisson rate of λ to the fact that a shock has perturbed the economy from

its non-stochastic steady-state. The linearized average beliefs about prices and the distribution then

evolve according to
dµt
dt

= BµV Vt +BµV µt +Bµppt + λ(µt − µt)

dpt
dt

= BpV Vt +BpV µt +Bpppt + λ(pt − pt).

dV t

dt
= BV V V t +BV µµt +BV ppt + λ(V̂t − V t).

with the initial conditions p0 = 0, µ0 = 0, and V 0 = 0 if the agents start with the belief that no shocks

have occured such that they are in the non-stochastic steady-state. As discussed in the preceding

sections, the distribution evolves according to the average control choices induced by the average

belief. These affect the prices in the economy, which are determined via linearized market clearing

conditions. Given the actual distribution (and the actual value of other macroeconomic variables),

prices thus solve the same fixed point problem that they do in rational expectations – except that now,

they must be consistent with market clearing under the evolution of control variables chosen with the

non-FIRE belief-averaged value function:

Apppt +Apµµt +ApV V t = Qdp/dt

Actual prices in turn determine the actual decision problem for the full information value function V̂ ,

which is sufficient for updating the average belief value function V .

Altogether, the new system for the sticky expectation economy is:

I 0 0 0 0 0

0 I 0 0 0 0

0 0 Q 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I





E[dV̂ ]

dµ

E[dp]
dV

dµ

dp


=



AV V AV µ AV p 0 0 0

0 Aµµ Aµp AµV 0 0

0 Apµ App ApV 0 0

λI 0 0 BV V − λI BV µ BV p

0 λI 0 BµV Bµµ − λI Bµp

0 0 λI BpV Bpµ Bpp − λI





V̂

µ

p

V

µ

p


dt.

(21)

This modified system can then be solved with standard methods to determine the dynamics of an

economy under a sticky information structure with a constant learning rate of λ.

With just a few additional lines of code, it is possible to recast a FIRE model into a sticky-

expectation environment. Similarly to the FIRE system, the model’s jump variables are V̂t and pt,

minus whatever predetermined variables are present in pt. The system therefore satisfies the Blanchard

and Kahn (1980) conditions when the number of explosive eigenvalues matches the cardinality of V̂t

and the non-predetermined variables in pt.
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4 Examples

4.1 A toy representative agent example

My computational approach can be demonstrated using a simple representative agent macroeconomic

model that can be exactly solved analytically. Consider the simple FIRE representative agent model

with the log-linearized Euler equation:

Et[dĉt]

dt
= γ−1r̂t

where the real interest rate follows rt = e−κtr0 with r0 given. Using the households budget constraints

and assuming that the household consumption path returns to steady-state, the consumption choice

can be written as:

ct = ρ

∫ ∞

t
e−(τ−t)ρEt[ŷτ ]dτ − γ−1

∫ ∞

t
e−(τ−t)ρEt[r̂τ ]dτ. (22)

With some calculus and a goods market clearing condition that yt = ct, the output response to the

sequence of real interest rate deviations is

yt = −γ−1 1

κ
r0e

−κt

Suppose instead households update their information about the macroeconomic environment at a rate

of λ. Aggregate consumption is then chosen in a way that depends on the aggregate expectation Et:

ct = ρ

∫ ∞

t
e−(τ−t)ρEt[ŷτ ]dτ − γ−1

∫ ∞

t
e−(τ−t)ρEt[r̂τ ]dτ. (23)

In the appendix, I show using sequence-space solution techniques that the sticky-expectation law of

motion will be
dyt
dt

=

(
dµt
dt

1

µt
+ (1− µt)ρ

)
yt + γ−1µtrt,

where µt = 1 − e−λt is the fraction of households who have updated to full information. In the limit

as ρ→ 0, the exact closed form solution is:

yt = −γ−1 1

κ

(
e−κt − e−(λ+κ)t

)
r0. (24)

Using the machinery from the previous section, the A matrix Jacobian for the FIRE system is thus[
Et[dĉ]

dr̂

]
=

[
0 γ−1

0 −κ

][
ĉ

r̂

]
dt

while the B matrix is here identical to the A matrix, as there are no static variables. The new

17



augmented system will be 
Et[dĉ]

dr̂

dy

dr

 =


0 γ−1 0 0

0 −κ 0 0

λ 0 −λ γ−1

0 λ 0 −λ− κ



ĉ

r̂

y

r

 dt (25)

Clearly, the eigenvalues of the system are 0, −κ, −λ, and −(λ+κ). Technically, the system is bor-

derline indeterminate – as the rational expectations model I started with is borderline indeterminate.

However, if we require that ĉt return to steady-state (and not just remain bounded), then this is a

constraint on the zero eigenvector (the nullspace of the matrix). As I show in Appendix A.8, solving

for the stable subspace of equation (25) recovers equation (24) for aggregate GDP exactly.

4.2 A Canonical HANK model

In this section, I solve a canonical HANK model with sticky expectations using both my state-space

approach and the sequence-space approach of Auclert, Rognlie, and Straub (2020). The model is

essentially the one solved in Kwicklis (2025a); the reader should refer to that paper for the model’s

derivation and details. There are only two important changes. First, while the original model was

solved with full information and rational expectations, the model in this section is of course solved

with sticky expectations. Second, the calibration in this section uses a more conventional active

monetary/passive fiscal form, as opposed to the “active fiscal” experiments considered in Kwicklis

(2025a). The central bank raises nominal interest rates more than one-to-one with inflation with a

Taylor rule coefficient of 1.5, while the government adjusts taxes over time to slowly stabilize its debt.

All other parameters are unchanged and are listed in the appendix.

For illustration, I consider two different shocks: a monetary policy shock (ζmp) that lowers the

interest rate by 1% on impact, and a fiscal transfer shock (ζtax) that sends flat transfers valued

at 1% of annualized steady-state GDP to all households simultaneously. The monetary policy shock

demonstrates how the methodology properly leads impulse responses generated by general equilibrium

feedbacks to become hump-shaped, while the fiscal transfer shock demonstrates how the model handles

instantaneous feedbacks to households’ individual budget constraints.

4.2.1 Abridged setup

Households choose consumption ct and take hours worked Lt as given (chosen by their union to meet

aggregate labor demand). They save via an non-contingent bonds at. subject to idiosyncratic risk

about their labor productivity zt, which follows a Gaussian log Ornstein-Uhlenbeck process with a

mean reversion parameter of θz and a variance parameter of σ2z :

d log(zt) = −θz log(zt)dt+ σzdWz,t
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whereWz,t is a standard normal Weiner process. The FIRE Hamilton Jacobi Bellman (HJB) equation

is

ρVt(at, zt) =max
ct

{
c1−γ
t − 1

1− γ
− L

1
η

t

1 + 1
η

+ ∂aVt(at, zt)(rtat + wtLt + Tt(zt, ζt)− ct)

}
+ ∂zVt(at, zt)

(
1

2
σ2z − θz log zt

)
+

1

2
σ2zz

2
t ∂

2
zVt(at, zt) + ∂tVt(at, zt)

s.t. at ≥ 0.

(26)

The first-order conditions imply the household chooses ct = (∂aVt)
−1/γ , such that h(V ) = (∂aV )−1/γ .

The distribution of households evolves according to

∂µt
∂t

(a, z) =− ∂

∂a

(
dat
dt

(V t, pt, a, z)µt(a, z)

)
− ∂

∂z

(
Et[dzt]

dt
µt(a, z)

)
+

1

2

∂2

∂z2

(
σ2z2µt(a, z)

)
. (27)

da

dt
(V t, pt, a, z) = rtat + wtLt + Tt(z, ζ)− h(V t)

Decentalized unions negotiate wages such that wage inflation (and overall inflation, if the passthrough

from firms to consumers is complete) abides by a New Keynesian Phillips curve similar to the one in

Auclert, Rognlie, and Straub (2024):

Et[dπt]

dt
= rtπt −

εℓ
θw

Lt

Z

∫ ∫ (
ht(a, z)

1
η − εℓ − 1

εℓ
(1− τ)zwtct(a, z)

−γ

)
µt(a, z)da dz. (28)

The Fisher equation connects r = it − πt. Tax policy is set via a slow-moving passive rule

Tt = τwtLt + ϕB(B −B∗) + ζtax,t, (29)

and government bonds evolve according to

dBt

dt
= −(Tt −Gt) + (it − πt)Bt. (30)

Monetary policy is set with a Taylor rule, plus a monetary policy shock:

it = r∗ + ϕππt + ζmp,t. (31)

The aggregate shocks ζ follow a mean-reverting process dζi,t = −θiζi,tdt, such that

ζi,t = e−θitζi,0. (32)

I linearize equations (26-31) around the non-stochastic steady-state wherein the aggregate shocks are

disabled: ζi,0 = 0. From there, I solve the linearized FIRE version of the model using the methodology

of Bayer and Luetticke (2020) in state-space and using the sequence-space Jacobian (SSJ) algorithm

of Auclert et al (2021) in sequence-space. I then solve the sticky expectation variation of the model

using my methodology in state-space and the Auclert et al (2020) methodology in sequence-space.

4.2.2 Simulation results

In Figure 1, I depict the impulse response functions of output and inflation to a 1% reduction in the

interest rate and a 1% of GDP increase in lump-sum government transfers using the two different
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Figure 1: Response of a canonical HANK model to a 1% monetary policy shock and a 1% government transfer shock,
as a percentage deviation from the non-stochastic steady-state. Orange and red denote inflation (using the Auclert et al
SSJ framework and my state-space approach, respectively). Blue and green denote GDP.

solution methods. Here, I set λ = 0.30, such that roughly half of the households have fully updated

for the presence of the macroeconomic shock 2.5 quarters after the shock’s impact.

On impact, a small gap appears on impact between the two impulse response functions. This is

because the sequence-space solution becomes higher and higher dimensional in continuous time as

the time grid becomes finer, which in turn limits the resolution of the continuous time SSJ solu-

tion.6 Approximation error notwithstanding, the state-space methodology broadly coincides with the

sequence-space one, even despite the fact that the state-space approach undergoes dimension reduction

with a fixed copula. Note that even though stimulus checks are macroeoconomic variables that only a

zero measure of households observe upon impact, the households do immediately observe an influx of

resources into their individual idiosyncratic accounts. As such, output jumps on impact. The model is

linear with respect to macroeconomic shocks, so if government transfers are reduced aggregate demand

also falls on impact, exactly inverting the pattern of a stimulus check disbursal.

As one might expect, increasing the learning rate by increasing λ leads the impulse response

functions to a monetary policy shock to more closely resemble those of the FIRE model. This property

is displayed in Figure 2. In the FIRE setting, output and inflation jump as soon as interest rates are

lowered. In the sticky expectations setting, however, the output response takes more time to build

and peaks lower as λ decreases.

5 Conclusion

In this article, I demonstrate how to solve a linearized sticky-expectation HANK model in sequence-

space by recycling the Jacobians obtained from the full information, rational expectations version of

the system. The approach is simple to implement, and only requires re-arranging the block matrices

of the FIRE problem. Each step is justified by relatively intuitive theoretical arguments, which are

simplified by working in continuous time and hold for a very broad class of models. I then provide two

6Naturally, Auclert, Bardóczy, et al. (2021) originally formulated the SSJ approach for discrete time. Greater numer-
ical accuracy could be obtained by using a non-uniform time step mesh – but this further complicates the approach. As
the size of the discretized dt time steps falls, the solution methods align more closely.
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Figure 2: A canonical HANK model’s response to a 1% monetary policy shock, for differing degrees of expectation
stickyness λ.

concrete applications of the solution technique – a simple analytical one, and a full-fledged numerical

HANK model – and show that my methodology produces the correct answer in the first case and

closely matches the sequence-space Jacobian numerical approximation in the second.

With this framework developed, a natural next step is to apply it to an empirically interesting

problem. I do this in Kwicklis (2025b). Many other interesting extensions exist, however. For

instance, because the sticky average beliefs are explicitly tracked in the model, one could consider the

effect of “expectations shocks” that directly change average beliefs, but do not directly affect market

fundamentals. Additionally, while I only consider the simple sticky expectations case, it may also

be possible to incorporate other learning and information structures into the state-space setting, as

Bardóczy and Guerreiro (2024) have done in the sequence-space setting. It may also be possible to

adapt some parts of the solution technique to discrete time models as well, although proving that the

technique works may be more challenging. In any case, this methodology offers an easily implemented

tool to allow researchers to consider alternatives to the full information, rational expectations setting

– while still maintaining the convenience of a state-space framework.
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A Appendix A: Derivation Proofs

A.1 Proposition 2.1: Derivation of the HJB Equation for i-Belief Households

Statement: The Hamilton Jacobi Bellman (HJB) equation for x ∈ X \ ∂X takes the form

ρV i
t (xt; pt, µt, p

i
t, µ

i
t) =max

c̃it

{
u(c̃it) +∇xV

i
t (xt; pt, µt, p

i
t, µ

i
t)
′Ei

t[f(xt, c
i
t; pt)] +

1

2
tr(σx(x)σx(x)

′∇2
xV

i)dt

+∇pV
i
t (xt; pt, µt, p

i
t, µ

i
t)
′Ẽi

t[g(p, µ)] +

∫
X
δµV

i
t (xt; pt, µt, p

i
t, µ

i
t)Ẽi

t[D∗
t (V, pt)µt]dx

}
.

Proof. The value function may be additively separated to write

Ẽi
t

∫ ∞

t
e−(τ−t)ρu(cτ )dτ = Ẽi

t

∫ t+dt

t
e−(τ−t)ρu(ciτ )dτ + Ẽi

t

∫ ∞

t+dt
e−(τ−t)ρu(ciτ )dτ

= u(cit)dt+ e−ρdtẼi
t Ẽi

t+dt

∫ ∞

t+dt
e−(τ−[t+dt])ρu(ciτ )dτ︸ ︷︷ ︸

Vt+dt(xt+dt;pt+dt,µt+dt)

= u(cit)dt+ e−ρdtẼi
tVt+dt(xt+dt; pt+dt, µt+dt)

So if the subjective measure still obeys the Law of Iterated Expectations (LIE), the discretized HJB

is indeed still

V i
t (xt; pt, µt, p

i
t, µ

i
t) = max

(cτ )τ≥t

u(cit)dt+ e−ρdtẼi
tV

i
t+dt(xt+dt, pt+dt, µt+dt, p

i
t+dt, µ

i
t+dt)

s.t. Ei
t[xt|dWt] = Ei

tf(xt, c
i
t; pt) + σx(x)dWt

Approximating e−ρdt ≈ 1− ρdt,

V i
t (xt; pt, µt, p

i
t, µ

i
t) = max

(ciτ )τ≥t

u(cit)dt+ (1− ρdt)Ẽi
tV

i
t+dt(xt+dt; pt+dt, µt+dt, p

i
t+dt, µ

i
t+dt)

Using a Taylor expansion about dt = 0,

V i
t+dt(xt+dt; pt+dt, µt+dt, p

i
t+dt, µ

i
t+dt) =V

i
t (xt; pt, µt, p

i
t, µ

i
t)

+∇xV
i
t (xt; pt, µt, p

i
t, µ

i
t)Ei

t[dxt] +
1

2
tr(σx(x)σx(x)

′∇2
xV

i)dt

+∇pV
i
t (xt; pt, µt, p

i
t, µ

i
t)
′ṗtdt+ dt

∫
X
δµV

i(xt; pt, µt, p
i
t, µ

i
t)∂tµtdx

+∇piV
i
t (xt; pt, µt, p

i
t, µ

i
t)
′ṗitdt+ dt

∫
X
δµiV i(xt; pt, µt, p

i
t, µ

i
t)∂tµ

i
tdx

+O(dt2)

where the Hessian ∇2V i appears because the differential of the Brownian covariation process d⟨x⟩t is
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proportional to dW 2
t = dt. Taking subjective expectations,

Ẽi
tV

i
t+dt(xt+dt; pt+dt, µt+dt, p

i
t+dt, µ

i
t+dt) =Ẽi

tV
i
t (xt; pt, µt, p

i
t, µ

i
t)

+∇xV
i
t (xt; pt, µt, p

i
t, µ

i
t)
′Ei

t[dxt] +
1

2
tr(σx(x)σx(x)

′∇2
xV

i)dt

+ Ẽi
t[∇pV

i
t (xt; pt, µt, p

i
t, µ

i
t)
′ṗdt]

+ Ẽi
t

[
dt

∫
X
δµV

i(xt; pt, µt)∂tµtdx

]
+O(dt2).

where I further assume the orthogonality conditions

Ẽi
t[∇pV

i
t (xt; pt, µt, p

i
t, µ

i
t)
′ṗ] = 0,

Ẽi
tV

i(xt; pt, µt, p
i
t, µ

i
t)∂tµt = 0

since holding subjective beliefs pit, µ
i
t constant, households in the state-space interior do not forecast

their value function to change based on the actual pt, µt.

I can substitute the subjectively expected Taylor expansion back into the HJB to write:

V i
t (xt; pt, µt, p

i
t, µ

i
t) = max

(cτ )τ≥t

u(cit)dt+

(1− ρdt)

[
V i
t (xt; pt, µt, p

i
t, µ

i
t) +∇xV

i
t (xt, pt)

′Ẽi
t[f(xt, c

i
t; pt)dt]

+
1

2
tr(σx(x)σx(x)

′∇2
xV

i)dt

+∇piV i
t (xt; pt, µt, p

i
t, µ

i
t)

′Ẽi
t[ṗ]dt+ dt

∫
X
δµiV i(xt; pt, µt, p

i
t, µ

i
t)Ẽi

t [∂tµt] dx+O(dt2)

]
⇒ ρV i

t (xt; pt, µt, p
i
t, µ

i
t)dt =max

c̃it

u(cit)dt+∇xV
i
t (xt; pt, µt, p

i
t, µ

i
t)
′Ei

tf(xt, c
i
t; pt)dt

+
1

2
tr(σx(x)σx(x)

′∇2
xV

i)dt

+ ∂piV
i
t (xt; pt, µt, p

i
t, µ

i
t)Ẽi

t[ṗ]dt

+

∫
X
δµiV i

t (xt; pt, µt, p
i
t, µ

i
t)Ẽi

t [∂tµt] dx+ Ẽi
t[∂tVt(xt; pt, µt)]dt+O(dt2)

Dividing by dt and taking dt→ 0:

ρV i
t (xt; pt, µt, p

i
t, µ

i
t) =max

c̃it

{
u(cit) +∇xV

i
t (xt; , pt, µt, p

i
t, µ

i
t)
′Ei

t[f(xt, c
i
t; pt)] +

1

2
tr(σx(x)σx(x)

′∇2
xV

i)

+∇piV
i
t (xt; pt, µt, p

i
t, µ

i
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′Ẽi

t[ṗ] +

∫
X

δV i
t (xt; pt, µt, p

i
t, µ

i
t)

δµit(x
′)

Ẽi
t

[
∂tµt(x

′)
]
dx′

}
,

as proposed in equation (3).
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A.2 Sticky mean expectation evolution

Start with the expression for the mean forecast:

Et[Yt+s] =

∫ ∞

0
λe−λτEt−τ [Yt+s]dτ.

Differentiating with respect to t,

d

dt
Et[Yt+s] =

d

dt

∫ ∞

0
λe−λτ

∫
Ω
yt+s(ω)ψt−τ (ω)dωdτ

=

∫ ∞

0
λe−λτ

∫
Ω

[
dyt+s

dt
(ω)ψt−τ (ω) + yt+s(ω)

dψt−τ (ω)

dt

]
dωdτ

=

∫ ∞

0
λe−λτ

∫
Ω

dyt+s

dt
(ω)ψt−τ (ω)dωdτ +

∫ ∞

0
λe−λτ

∫
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yt+s(ω)

dψt−τ (ω)

dt
dωdτ

=

∫ ∞

0
λe−λτEt−τ

[
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dt

]
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Et[∂tYt+s]

+

∫ ∞

0
λe−λτ

∫
Ω
yt+s(ω)

dψt−τ (ω)

dt
dωdτ

For the second term, I can interchange the order of integration and integrate by parts with u =

λe−λτyt+s(ω) and v = −ψt−τ (ω):∫
Ω

∫ ∞

0

λe−λτyt+s(ω)
dψt−τ (ω)

dt
dτdω =

∫
Ω

∫ ∞

0
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dτ

)
dτdω
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∫
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dω +

∫
Ω
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0
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−λτyt+s(ω)]dτ

= λ
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yt+s(ω)ψt(ω)dω − λ

∫
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0

ψt−τ (ω)λe
−λτyt+s(ω)dτdω

= λ

(
Et[Yt+s]− Et[Yt+s]

)
.

As such, the complete evolution of the forecast is

d

dt
Et[Yt+s] = Et[∂tYt+s] + λ

(
Et[Yt+s]− Et[Yt+s]

)
.

A.3 Proof of 2.3: Characterizing the household choices averaged over beliefs

Proof. Let ∆ denote the difference of a variable from its non-stochastic steady-state (when there are

no macroeconomic shocks). The consumption choice averaged over all idiosyncratic beliefs will be:∫
i
cit(x; p, µ, p

i, µi)di =

∫
i
h
(
V i
t (x; p, µ, p

i, µi), pt
)
dΛ(i)

Let GV pi(x) and GV µi(x) denote the Jacobians of V i with respect to pi and µi at the steady-state,

and let GV p(x) and GV µ(x) be the Jacobians with respect to the actual p and µ. Additionally, let

GV p(x) and G
i
V µ(x) denote the Jacobians of the value function calculated with the average beliefs.
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Note that since GV µ(x) is itself a functional derivative, so the operator is in fact shorthand for

GV µ(x)∆µ ≡ DµV [∆µ](x) =

∫
X

δV (x)

δµ(x′)
∆µ(x′)dx.

With a first-order Taylor expansion around the steady-state:∫
i
∆cit(x; p, µ, p

i, µi)di =

∫
i
∂V h(x)

[
GV p(x)∆p+GV µ(x)∆µ+GV pi(x)∆p

i +GV µi(x)∆µi
]
dΓ(i) + ∂ph(x)∆p

+O(∥∆p2,∆µ2, (∆pi)2, (∆µi)2∥)

=∂V h(x)
[
GV p(x)∆p+GV µ(x)∆µ+GV pi(x)∆p+GV µi(x)∆µ

]
+ ∂ph(x)∆p

+O(∥∆p2,∆µ2, (∆pi)2, (∆µi)2∥)

=∆h(V (p, µ, p, µ), p) +O(∥∆p2,∆µ2, (∆pi)2, (∆µi)2∥)

As such,

h(V t, pt) = ct(x; p, µ, p, µ) =

∫
i
cit(x; p, µ, p

i, µi)dΓ(i) +O(∥∆p2,∆µ2, (∆pi)2, (∆µi)2∥)

in a neighborhood around the non-stochastic steady-state.

A.4 Proof of Proposition 2.6

Statement: Suppose the economy starts in its non-stochastic steady state when a macroeconomic shock

occurs. If the KFE generator is mass-preserving, then the value function of households at the boundary

will satisfy equation (7.5).

Proof. Let J(x, c(x), p, µ) denote the probability flux vector field for all x ∈ X , i.e. the instantaneous

rate at which probability mass changes in a given direction at a point in the idiosyncratic state-space

x ∈ X per increment of time. Note that probability mass enters or leaves a region of space in one of

two ways: mass flows into the region advectively by being pushed directly by the flows of the mean

state equations, or it diffuses out at a rate related to the directional gradient of the mass already in

the region relative to surrounding regions. For my problem,

J(x, ct(Vt(x)), pt, µt) = f(x, ct(Vt(x)), pt)µt(x)︸ ︷︷ ︸
Advective

− 1

2
∇x · (σx(x)σx(x)′µt(x))︸ ︷︷ ︸

Diffusive

(Note that ∇ · A(x) is here defined as the gradient operator dotted with each row of the matrix,

transforming the matrix into a vector.) The Kolmogorov Forward Equation is equivalent to the

statement

∂tµt(x) +∇x · J(xt; c(Vt(x)), pt, µt) = 0.

such that the total change in probability density at a point x ∈ X is equal to the spatial divergence
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of the probability flux field. Writing this in terms of the KFE infinitessimal generator,

D∗(V, p)[µ](x) = −∇x · J(xt; ct(Vt(x)), pt, µt), such that ∂tµt = D∗(V, p)[µt](x).

Note that as the name implies, if the operator is mass-preserving, the total flux of probability

through the space X will always be zero:∫
X
∂tµt(x) =

∫
X
D∗(p, V )[µ](x)dx =

∫
X

∫
X
D∗(p, V )(x, x′)µ(x′)dx′dx

=

∫
X

∫
X
D∗(p, V )(x, x′)µ(x′)dx dx′ =

∫
X

[∫
X
D∗(p, V )(x, x′)dx

]
︸ ︷︷ ︸

0

µ(x′)dx′ = 0.

The first equality of the second line above follows from Fubini’s theorem, since the boundary is assumed

to be rectangular, allowing for the order of integration to be interchanged.

Using the relation between the probability flux field and the infinitessimal generator, it then follows

that

0 =

∫
X
D∗(V, p)[µ](x)dx = −

∫
X
∇x · J dxn = −

∮
∂X

J(x) · n⃗(x) dS

where the last inequality follows from Gauss’ Divergence Theorem, and S is the boundary of the

idiosyncratic state-space (note that the surface integral on the right is one dimension lower than the

volume integral on the left). Here, n⃗(x) is a unit vector normal to the boundary ∂X , at a point

evaluated somewhere along said boundary.

As such, the total net flux of probability mass across the boundary of the state-space must be equal

to zero. However, if all of the initial distribution is inside the idiosyncratic state-space (as it is in the

non-stochastic steady-state), then this means there can be no flux anywhere along the boundary.

Note that the above equality must hold for any distribution, even those that that start with a

Dirac delta mass on the boundary. As such, the final integral must hold point-wise. Intuitively, if no

mass can cross the {xi = xi} hyperplane, then probability must flow along (tangent to) it. As such, a

vector orthogonal to the hyperplane boundary must also be orthogonal to the probability flux:

J(xt) · n⃗(xt) = 0.

For a boundary of the form xi > x, the orthogonal vector n⃗ is simply the ith standard basis vector.

Suppose there is no diffusive term for the constrained variable xi. This then implies if x ∈ ∂X ,

J(x;h(Vt(x)), pt, µt) · n⃗(x) = 0

⇐⇒ fi(x, h(Vt(x)), ptµt)µt(x) = 0

And if µt(x) > 0, then

⇐⇒ fi(x, h(Vt(x)), pt) = 0.

A mass-preserving KFE infinitesimal generator at each point in time is thus tantamount to a boundary
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condition

fi(x, h(Vt(x)), pt) = 0

where x ∈ ∂X such that xi = xi.

For example, suppose the law of motion for assets is f(xt, ct, pt) = rtxt + wt + Tt − ct, where

pt = [rt, wt, Tt] in this case is the real rate of return, the aggregate wage, and government transfers to

households (all macroeconomic objects). The household at the boundary with assets x = 0 will then

satisfy

ct = h(Vt) = wt + Tt

as an equilibrium condition. This condition is inherited from the fact that the HJB infinitessimal

generator is mass preserving – even if the household does not correctly perceive macroeconomic wages

and prices.

A.5 Proof of Proposition 2.7

Statement: If the KFE infinitessimal generator D∗(V, p) is a first-order perturbation of the steady-state

one with respect to macroeconomic variables, then it will be mass-preserving if the Jacobians evaluated

at the steady-state are mass-preserving.

Proof. This statement is nearly a tautology. To see this, take the kernel and approximate to first

order:

∂tµt(x) =

∫
X
D∗(Vt, pt)(x, x

′)µt(x
′)dx′ ≈

∫
X
D∗

V (x, x
′)∆Vt(x

′)dx′+D∗
p(x)∆pt+

∫
X
D∗

µ(x, x
′)∆µt(x

′)dx′

Here, D∗
V , D

∗
µ, D

∗
p are the Jacobians (Frechét in the for µ and V ) evaluated in the non-stochastic

steady-state. Integrating over the entire distribution, if the Jacobians are all mass-preserving:∫
X
∂tµt(x)dx =

∫
X

∫
X
D∗(Vt, pt)(x, x

′)µt(x
′)dx′ dx

≈
∫
X

∫
X
D∗

V (x, x
′)∆Vt(x

′)dx′ dx+

∫
X
D∗

p(x)∆ptdx+

∫
X

∫
X
D∗

µ(x, x
′)∆µt(x

′)dx′ dx

=

∫
X

[∫
X
D∗

V (x, x
′)dx

]
∆Vt(x

′) dx′ +

∫
X
D∗

p(x)dx∆pt +

∫
X

[∫
X
D∗

µ(x, x
′)dx

]
∆µt(x

′)dx′

=0.

If for any distribution µt in the approximation,∫
X

∫
X
D∗(Vt, pt)(x, x

′)µt(x
′)dx′dx = 0

then it must also be that up to a first order approximation∫
X
D∗(Vt, pt)(x, x

′)dx = 0

29



such that the linearized KFE operator will also be mass-preserving in the perturbation if the Jacobians

integrate to zero over x.

A.6 Proof of Proposition 2.8: Average belief value function updating

Statement: To a first-order approximation, the average belief household updates its value function with

a constant factor of λ(∆V̂ −∆V ).

Proof. First, note when an update occurs, the learning occurs to the entire sequence of macro aggre-

gates. At time t, the sequences of beliefs (both about the current state and the future) are updated

at rates of {λ(µt+s − µt+s)}s≥0 and {λ(pt+s − pt+s)}t≥0 multiplied by the time increment dt.

Next, note that the average expectation household and the full information household both essen-

tially solve the same HJB equation:

ρvt(xt) =max
ct

{
u(h(vt(xt), pt)) +∇xvt(xt)

′f(xt, h(vt(x), pt); pt)

}
+ ∂tv(xt)

s.t. xt ≥ x ∀t.

which can be linearized such that

∂t∆vt(x) =

∫
X
AV V (x, x

′)∆vt(x
′)dx′ +

∫
X
AV µ(x, x

′)∆µt(x
′)dx′ +AV p(x)∆pt +O([...]2).

and then – assuming that limT→∞∆VT (x) = 0 – solved forward to write

V(x, {pτ , µτ}τ≥t) ≡
∫ ∞

t

[
e−AV V (τ−t)

]
(x, x′′)

[ ∫
X
AV µ(x, x

′)∆µτ (x
′)dx′ +AV p∆pτ

]
dx′′dτ.

Here, V(x, {pτ , µτ}τ≥t) represents the solution of the HJB given sequences of macro agreggates and

distributions from time period t onwards. In equibrium,

∆V t(xt) =V(x, {pτ , µτ}τ≥t),

∆V̂t(pt) =V(x, {pτ , µτ}τ≥t).

Because V is linear in the macro aggregates, the effect of an update can be expressed as

V(x, {λ(pτ − p)dt, λ(µτ − µτ )dt}τ≥t) =

λdt

∫ ∞

t

[
e−AV V (τ−t)

]
(x, x′′)

[ ∫
X
AV µ(x, x

′)[∆µτ (x
′)−∆µτ (x

′)]dx′ +AV p[∆pτ −∆pτ ]

]
dx′′dτ

= [V(x, {pτ , µτ}τ≥t)− V(x, {pτ , µτ}τ≥t)]dt

= λ[∆Vt(x)−∆V t(x)]dt.
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Appendix B: Analytical RANK Example

A.7 Sequence space derivation of a simple RANK model

ct = ρ

∫ ∞

t
e−(τ−t)ρEt[yτ ]dτ − γ−1

∫ ∞

t
e−(τ−t)ρEt[rτ ]dτ (33)

where for the market to clear, yt = ct for the representative agent. Suppose monetary policy sets

rt = e−κtr0.

1. Rational expectations: Suppose Et = Et. Then if there are no further shocks to the economy,

yt = ρ

∫ ∞

t
e−(τ−t)ρyτdτ − γ−1

∫ ∞

t
e−(τ−t)ρrτdτ

where∫ ∞

t
e−(τ−t)rτdτ =

∫ ∞

t
e−(τ−t)r0e

−κτdτ = r0e
ρt

∫ ∞

t
e−(ρ+κ)τdτ = r0e

ρt −1

ρ+ κ
e−(ρ+κ)τ

∣∣∞
t

=
r0e

−κt

ρ+ κ
.

Meanwhile, setting G(t) =
∫∞
t e−(τ−t)ρyτdτ ,

G′(t) = −yt + ρG(t)

such that

0 = −yt + ρ

∫ ∞

t
e−(τ−t)ρyτdτ︸ ︷︷ ︸

G(t)

−γ−1

∫ ∞

t
e−(τ−t)ρrτdτ

G′(t)− γ−1 r0e
−κt

ρ+ κ
= 0.

Integrating both sides forward∫ ∞

t
G′(s)ds− γ−1 r0

ρ+ κ

∫ ∞

t
e−κsds = 0

⇒ lim
s→∞

G(s)−G(t) = γ−1 r0
ρ+ κ

1

κ
e−κt

G(t) = −γ−1 r0
ρ+ κ

1

κ
e−κt.

Substituting this into the original expression,

yt = −ρ

G(t)︷ ︸︸ ︷
γ−1 r0

ρ+ κ

1

κ
e−κt−γ−1 r0

ρ+ κ
e−κt = −γ−1 r0

ρ+ κ

(ρ
κ
+ 1

)
e−κt

yt = −γ−1 1

κ
r0e

−κt

2. Sticky info. Suppose a fraction λ updates their beliefs about the macro environment per incre-
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ment dt, such that dµt = λ(1−µt)dt where the fraction of households who have updated at time

t is µt = 1− e−λt. It further follows that µ̇t = λe−λt. Thus the average expectation is

Et[xτ ] = (1− µt) (0)︸︷︷︸
No

update

+µt xτ︸︷︷︸
Actual

.

Thus

Et[xτ ] = µtxτ

Note that µ0 = 0, limt→∞ µt = 1. As λ→ ∞, µt → 1, while λ→ 0 causes µt = 0.

3. Substituting this into (33),

yt = µt

[
ρ

∫ ∞

t
e−(τ−t)ρyτdτ − γ−1

∫ ∞

t
e−(τ−t)ρrτdτ

]
.

Differentiating with respect to time,

dyt
dt

=
dµt
dt

yt
µt

+ µt
d

dt

[
ρ

∫ ∞

t
e−(τ−t)ρyτdτ − γ−1

∫ ∞

t
e−(τ−t)ρrτdτ

]
=
dµt
dt

yt
µt

+ µt

[
ρ

(
−yt + ρ

∫ ∞

t
e−(τ−t)ρyτdτ

)
− γ−1

(
−rt + ρ

∫ ∞

t
e−(τ−t)ρrτdτ

)]
=
dµt
dt

yt
µt

+ µt(−ρyt + γ−1rt) + ρµt

[
ρ

∫ ∞

t
e−(τ−t)ρyτdτ − γ−1

∫ ∞

t
e−(τ−t)ρrτdτ

]
︸ ︷︷ ︸

yt

.

Thus
dyt
dt

=

(
dµt
dt

1

µt
+ (1− µt)ρ

)
yt + γ−1µtrt

Note that dµt

dt
1
µt

= λ (1−µt)
µt

= λ(µ−1
t − 1):

dyt
dt

= (1− µt)

(
λ

µt
+ ρ

)
yt + γ−1µtrt

4. In the limit as ρ→ 0,
dyt
dt

− dµt
dt

1

µt
yt = γ−1µtrt.

Write an integrating factor as e
∫∞
t

dµs
ds

1
µs

ds
. Multiplying both sides,

e
∫∞
t

dµs
ds

1
µs

ds
(
dyt
dt

− dµt
dt

1

µt
yt

)
︸ ︷︷ ︸

d
dt

[
yte

∫∞
t

dµs
ds

1
µs

ds
]

= e
∫∞
t

dµs
ds

1
µs

ds
γ−1µtrt.
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Solving out the integral, u = µs, du = dµs

ds ,∫ ∞

t

dµs
ds

1

µs
ds =

∫ 1

µt

1

µs
dµs = lim

s→∞
log(µs)− log(µt) = − log(µt)

such that
d

dt

[
1

µt
yt

]
=

1

µt
γ−1µtrt.

Integrating from t to ∞, assuming limτ→∞ yτ = 0:∫ ∞

t

d

ds

(
1

µτ
ys

)
dτ = γ−1

∫ ∞

t
rτdτ

⇒ 0− 1

µt
yt = γ−1

∫ ∞

t
rτdτ

yt = −γ−1µt

∫ ∞

t
rτdτ

If rτ = r0e
−κτ , then

yt = −γ−1µt

∫ ∞

t
r0e

−κτdτ

yt = −γ−1µt
1

κ
r0e

−κt

Substituting the definition of µt into the expression concludes the derivation.

A.8 Solving the Stable Subspace of Equation (25)

Start with equation (25): 
Et[dĉ]

dr̂

dy

dr

 =


0 γ−1 0 0

0 −κ 0 0

λ 0 −λ γ−1

0 λ 0 −λ− κ



ĉ

r̂

y

r

 dt

The eigenvectors of the system matrix can be collected into the change of bases matrices from

(P ) and to (P−1) eigen coordinates, where the eigenvector columns correspond to the eigenvalues

listed in descending order:

P =


1 1 0 0

0 −κγ 0 0

1 1 1 1

0 −κγ 0 −κγ

 ⇒ P−1 =



1 1
γκ 0 0

0 − 1
γκ 0 0

−1 − 1
γκ 1 1

γκ

0 1
γκ 0 − 1

γκ


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Under the restriction that system dynamics are orthogonal to the zero eigenvector (such that

the system strictly returns to steady-state), the first row of P−1 dotted with the state system

must be zero, such that

ĉt = −γ−1 1

κ
r̂t.

The updating households will switch to the full information IRF once they become aware of the

shock. The choice of yt will then correspond with the y expectations (after being updated for

learning). Eliminating the solved consumption choice of the updating households, I arrive at the

stable system dr̂dy
dr

 =

 −κ 0 0

−λγ−1κ−1 −λ γ−1

λ 0 −λ− κ


r̂c
r

 dt
With the control variable associated with updating agents substituted out, the system is in its

stable subspace; it is simply a system of linear ODEs with a known set of initial conditions.

Integrating this system forward (starting with interest rates, then expected interest rates, and

then expected output),r̂tyt
rt

 =

 e−κt 0 0

−γ−1 1
κ

(
e−κt − e−(λ+κ)t

)
e−λt −γ−1 1

κ

(
e−λt − e−(λ+κ)t

)
e−κt − e−(λ+κ)t 0 e−(λ+κ)t


r̂0y0
r0

 .
Using the initial conditions that y0 = 0 and r0 = 0,

yt = −γ−1 1

κ

(
e−λt − e−(λ+κ)t

)
r0.

The linearized solution matches the closed form solution obtained with ρ = 0 exactly. Note that

yt (post updating) is equal to the actual realized yt; aggregate output is equal to the consumption

decisions chosen by all of the agents in the population, averaged over their beliefs.
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B Appendix C: Canonical HANK Model Parameters

The following parameters are used for the numerical solution presented in Section 4.2.

Table 1: Numerical Solution: HANK Model Parameters

Parameter Symbol Value Source or Target

Households
Internally Calibrated:
Quarterly Time Discounting ρ 0.021 r = 2% Annually
Idiosyncratic Income Shock Variance σ2

z 0.017 Floden and Lindé (2001)
Idiosyncratic Shock Mean Reversion θz 0.034 Floden and Lindé (2001)

Assumed from Literature:
Relative Risk Aversion γ 2.0 McKay et al (2016)
Frisch Elasticity of Labor η 0.5 Chetty (2012)

Labor Market
Labor Elasticity of Substitution εL 10 Philips Curve slope of 0.07
Rotemberg wage adjustment cost θw 100 Philips Curve slope of 0.07

Government
steady state government debt BNSS 2.63 HANK iMPC0 ≈ 0.40
Geometric maturity structure of debt ω 0.043 Avg. maturity of 70 months
Income Tax Rate τ 0.25
Taylor Rule Coefficient ϕπ 1.5 Active monetary policy
Fiscal Debt Coefficient κ 0.10 Passive fiscal policy

Shocks
Mean reversion of fiscal shocks θTax 1.0
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