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Abstract

When fiscal policy is active and monetary policy is passive in a heterogeneous agent New

Keynesian (HANK) model, deficit-financed transfers to low-asset households lead to similar

cumulative inflation but greater increases in real output than transfers to wealthier house-

holds. I use the inverse of the “Phillips multiplier,” the price level sacrifice ratio, to quantify

this dynamic. Household heterogeneity and targeted policy change the timing of output

gaps, making this consistent with the Phillips Curve and rendering conventional sacrifice

ratio intuition misleading for assessing the inflation/output trade-off between policies.
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1. Introduction

The trade-off between real output and inflation following unanticipated changes to fiscal

policy remains a long-standing open question in macroeconomics. In the parlance of Leeper

(1991), much of the previous literature has focused on models where monetary policy is

“active” and fiscal policy is “passive.” However, monetary policy in the United States has

been constrained by the zero lower bound for much of the early 21st century, while fiscal

authorities have increasingly responded to changing macroeconomic conditions with tax cuts

and transfer programs. As such, this paper departs from standard policy regime assumptions
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and instead explores the implications of active fiscal and passive monetary policy for out-

put and inflation in a canonical heterogeneous agent New Keynesian (HANK) model with

idiosyncratic income risk and incomplete asset markets, such that households are heteroge-

neous in their marginal propensities to consume (MPCs).

If the government sends deficit-financed transfer payments to low-wealth households with

high MPCs, then the cumulative increase in real GDP is predictably larger than when the

transfers are sent to wealthier, lower-MPC households. However, the long-term effect on

the price level – total cumulative inflation – is largely the same under both transfer policies

provided they lead to similar amounts of nominal government debt (net nominal private

assets) that are not paid off by future tax revenue and are instead inflated away. If all taxes

and transfers are lump-sum and set exogenously by policy, the net present value of inflation

is entirely invariant to a fiscal stimulus’ targeting.

This finding runs counter to the intuition that output gaps and the price level might

move proportionally as measured by stable “sacrifice ratios,” which measure the cumulative

percentage change in real GDP relative to trend associated with a one percentage point

abatement in inflation. This quantity is closely related to the inverse slope of the New

Keynesian Phillips curve, a ubiquitous feature in models with nominal rigidities. However,

the total inflationary impact of a policy is not just the difference in the inflation rate before

and after its implementation, but the total rise in the price level – the cumulative inflation

– ascribed to the policy. As such, I instead use what I call the price level sacrifice ratio,

defined as the ratio of cumulative annual output gaps to cumulative inflation, making it

the theoretical inverse of the total “Phillips multiplier” empirically defined and estimated in

Barnichon and Mesters (2021) and discussed in Lepetit and Furlanetto (2024) (but for fiscal

policy rather than monetary policy). I show that for the New Keynesian Phillips Curve,

the timing of the output gaps (an endogenous object) is crucial for determining the size of

these sacrifice ratios as well. Fast expansions or contractions move inflation less overall than

slower ones, even with the simplest New Keynesian Phillips Curve. How a policy interacts

with MPC heterogeneity changes this timing, and thus changes the trade-off.

My analysis comes in two parts. First, I briefly outline a simplified two-agent New Keyne-

sian (TANK) model where one group of households smooths consumption with their savings
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while the other group is constrained to spending their income as soon as it is received. I then

provide closed-form analytical results for the simple economy to ascertain why heterogeneity

is of only minor relevance for the determination of the overall price level but important for

the output response, and how this is consistent with the Phillips Curve.

In the second part of my analysis, I replace the two-agent block of the TANK model with

a calibrated distribution of households over asset and income states. Agents face uninsurable

idiosyncratic income risk and incomplete markets, yielding a canonical HANK framework

with active fiscal policy and passive monetary policy. Unlike in the TANK model, the dis-

tributions of assets and MPCs are endogenous and targeted to match empirical moments,

while the income distribution is parameterized to match data measurements of earnings au-

tocorrelation and volatility. Although more complicated than the TANK setting, this model

delivers similar conclusions. However, the added realism of asset and income inequality, pre-

cautionary savings motives, and endogenous MPCs make the setting an ideal “laboratory”

with which to examine how active fiscal policy regimes function when fiscal transfers are

targeted to one group but not another.

I provide an overview of the literature in Section 2. In Section 3, I discuss the simple two-

agent model. Section 4 outlines the quantitative HANKmodel and the numerical experiment.

Section 5 describes the results of the HANK experiment, with a particular focus on the

sacrifice ratios generated by each policy. Section 6 concludes.

2. Related Literature

This paper solves a calibrated incomplete markets business cycle model with New Key-

nesian nominal rigidities to evaluate the effects of fiscal policy when fiscal policy is active

and monetary policy is passive. While textbook New Keynesian models initially emphasized

monetary policy, incomplete markets’ endogenous MPC heterogeneity has led many HANK

papers to explore (passive) fiscal policy, either as a transmission method for monetary policy

as in McKay et al. (2016) and Kaplan et al. (2018) or in its own right as in papers like Auclert

et al. (2024) and Auclert et al. (2023b). Few papers, however, directly consider fiscal shocks

that explicitly target one group of households or another – much less fiscal shocks that do

so and are active. My paper helps fill this gap.
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As alluded to in the introduction, I use the terms “active” and “passive” to describe fiscal

and monetary policy in the style of Leeper (1991). When fiscal policy is “active,” it does

not automatically stabilize the government’s real debt to steady state levels over time for all

sequences of the price level, but instead lets the price level stabilize the real value of nominal

liabilities via an immediate jump or inflation. To this end, bonds are nominally denominated

in my model and monetary policy is “passive” and accomodative with inflation such that it

raises nominal interest rates less than one-for-one with inflation, unlike in the aforementioned

HANK papers McKay et al. (2016), Kaplan et al. (2018), and Auclert et al. (2024), which

all feature active monetary policy and real bonds. My chosen active fiscal/passive monetary

environment thereby echoes the fiscal theory of the price level (FTPL) mechanism described

in Woodford (1995), Sims (1994, 2011), Cochrane (2001, 2018b,a, 2023), Bianchi et al. (2023),

and many others.

Although my framework is conceptually similar to the FTPL literature (and FTPL de-

scribes my simple two-agent TANK model in Section 3), the introduction of incomplete

markets results in nontrivial differences. Farmer and Zabczyk (2019) notes that FTPL can

fail to deliver determinacy when the steady-state real interest rate is endogenous, a feature

that Hagedorn (2024) shows to also be true for incomplete markets models. Instead, Hage-

dorn (2016, 2023, 2024) contend that if the government issues more nominal debt, then the

price level adjusts to equate the real demand for those assets to their real supply. Indeed,

Angeletos et al. (2024) consider a HANK model at a zero liquidity limit (in the style of

Werning (2015) but with active fiscal policy) to show that HANK equilibria are determined

by a failure of Ricardian equivalence. My paper concurs with this view; as in Angeletos

et al. (2024) and Hagedorn (2024), in Appendix B I show that my HANK model remains

determinate even when both fiscal and monetary policy are passive.

While most of the HANK literature has committed to exploring the conventional passive

fiscal/active monetary setting with real bonds, Hagedorn et al. (2019) is an exception in

that it examines the strength of fiscal policy with an alternative determinacy mechanism

and nominal bonds. Specifically, Hagedorn et al. (2019) achieves determinacy in part via a

fiscal commitment to a fixed (indeed constant) path of nominal government bonds, generating

a kind of price level targeting result to stabilize real debt. Non-Ricardian agents and nominal
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government debt are also important in my setting. However, my model does not assume the

government exogenously sets a path for nominal debt. Rather, it continues the precedent of

previous FTPL papers: the government uses fiscal policy to commit to a sequence of real

transfers by issuing nominal liabilities as required by the current price level, whatever the

current price level may be. The price level must then adjust in equilibrium to bring the real

value of these outstanding nominal liabilities back to their steady-state values to stay on

the system’s stable manifold – or else the non-Ricardian consumers would send the economy

down an explosive path that cannot be an equilibrium.

My analysis is the first to study active fiscal policy with group-specific transfers in a

fully-fledged HANK model with nominal rigidities, but Kaplan et al. (2023) similarly ex-

amine active fiscal/passive monetary policy in an endowment incomplete markets economy

without nominal rigidities – and thus without a Phillips curve relating output gaps to changes

in the price level. The authors’ endowment economy experiments1 show that fiscal transfers

cause more short-run inflation than in a representative agent model by reallocating resources

to constrained households. Over time, inflation converges to a one-time price level jump.

Importantly, whether transfers are targeted or not has little impact on inflation dynamics, a

result preserved in my model with sticky prices. While our focuses differ, my work comple-

ments theirs by emphasizing output-inflation trade offs in settings with nominal rigidities.

All of my simulations are for certainty-equivalent models using linearized perturbations

from a non-stochastic steady state. I use the sequence-space Jacobian technique of Auclert

et al. (2021) to solve the HANK model. I also use the state-space method of Bayer and

Luetticke (2020) (a modification of Reiter (2009)) solved via a Schur decomposition as an

added numerical determinacy check. All models are solved using finite difference approx-

imations in continuous time. Werning (2015) and Acharya and Dogra (2020) show that

the determinacy and dynamics in HANK models is strongly affected by the cyclicality of

1Kaplan et al. (2023) additionally find that while a heterogeneous agent active fiscal/passive monetary
economy retains uniqueness and determinacy when the government runs surpluses in the steady state, mul-
tiple equilibria may emerge when the government runs perpetual deficits and r < g. The authors suggest
policy rules for eliminating this multiplicity of equilibria and run most of their simulations in an r < g
setting, but I consign my model to a more theoretically conventional environment with positive steady state
primary surpluses and r > g.
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idiosyncratic income risk; I abstract away from these forces in my model by considering

an environment where the risk is acyclical, bringing the model closer to the RANK-like

benchmark obtained in Werning (2015).

3. Analytic Expressions and a Simple Model

Consider two policies that lead to the same net present value of government deficits,

discounted at the steady-state discount rate. One policy sends transfers to households who

spend the money immediately, while the other sends money to those who are forward-looking

and save. Both policies lead to the same present value of inflation if inflation (accommodated

by monetary policy) restores real government liabilities to their steady-state level; the net

present value of inflation will be invariant (analytically, to first-order) to the distribution of

transfer recipients if deficits are exogenous. If the rate of discounting is small, this present

value of inflation is then (quantitatively) very close to the overall actual rise in the price

level and the rise in nominal debt. Alternatively, if two policies lead to the exact same

accumulation of long-term nominal debt, then the increase in the price level will also be

exactly the same. In either case, the change in real GDP might vary between the two

policies, as it strongly depends on the MPCs of the recipient households.

This phenomenon is analytically apparent in a TANK model where a measure (1 − µ)

of constant relative risk averse (CRRA) households (“savers”) discount the future at a rate

of ρ and choose their consumption via a standard Euler equation, while another measure µ

of households are constrained to be hand-to-mouth (“spenders”). Aggregate demand is the

weighted sum of the two households’ consumption choices, while firms set prices according

to a standard Phillips Curve. Suppose the government takes on debt to send transfers to

one household or the other at time t and never raises taxes to pay this debt back, while

the central bank accommodates this by fixing nominal interest rates to a constant value.

Appendix A.1 characterizes this equilibrium with five equations.

3.1. Government Deficits and Inflation

When the government issues transfers to either group of households, it exogenously

changes its total net primary surplus Tt and issues more nominal debt with a real value
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of Bt at a real interest rate of rt = i− πt:

dBt

dt
= −Tt + (i− πt)Bt. (1)

This equation is the same in HANK, RANK, and TANK. In Appendix A.3, I integrate the

equation forward, apply the saver household’s transversality condition and log-linearize to

show

Et

∫ ∞

t
e−(τ−t)rπ̂τdτ = B̂t − Et

[
T

B

∫ ∞

t
e−(τ−t)rT̂τdτ

]
(2)

where variables without a time subscript denote values in the non-stochastic steady state,

while hatted variables denote percent deviations thereof.

Up to a first-order approximation, the present value of inflation (discounted according

to the steady state discount rate, here ρ) will be equal to the discounted value of future

unfunded deficits as a percentage of steady state debt – plus whatever excess real debt B̂t

the government carried over into the period, which will be zero if the economy was in its

non-stochastic steady-state prior to the shock.

If deficits (−Tτ )τ≥t are themselves exogenous, then household heterogeneity does not

enter into equation (2) at all, and so the present value of inflation discounted at the steady-

state rate is invariant to household heterogeneity. As such, the only way that household

heterogeneity can affect the total rise in the price level is by changing the timing of inflation

while keeping its net present value constant. These timing effects are very small, however,

if steady state interest rates are small (r = 0.005 in a quarterly calibration that targets 2%

annual rates) and inflation mean reverts quickly after a few years.

By this logic, a surprise transfer to high MPC households might lead to slightly less

long-run inflation than alternative transfer arrangements if inflation peaks rapidly following

the transfer shock. This could occur if large immediate output gaps translate to more

initial short-term inflation through the Phillips curve, reducing real interest rates for the

government and thus the amount of interest expense that the economy must inflate away.

Indeed, this is exactly what occurs the simulated HANK model. This also provides an

opportunity to describe how nominal rigidities fit into this picture.
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3.2. How is this consistent with the Phillips Curve?

Although the net present value of inflation is pinned down by policy, the exact path the

price level takes is still described by the New Keynesian Phillips Curve:

ρπt =
Et[dπt]

dt
+ νŶt (3)

where πt is the inflation rate, Ŷt is the output gap, and ν is the slope of the Phillips Curve.

The Phillips Curve does describe the dynamic relationship between inflation and the

output. Differentiating inflation πt by the present value of all future output gaps yields

a conventional sacrifice ratio (change in the net present value of future output gaps per

percentage point decline in inflation) of 1/ν. However, even in this very simplified model,

the relationship between total cumulative inflation and output depends on the timing of the

output gaps. In Appendix A.2, I show that integrating (3) forward twice yields

Et

∫ ∞

t
πτdτ = νEt

∫ ∞

t
(τ − t)e−ρ(τ−t)Ŷτdτ (4)

If the rate of discounting or amount of time since the shock has transpired is small, output

gaps twice as far into the future count roughly double toward the total amount of inflation;

the further the output gap is into the future, the more inflationary it is.

The intuition is straightforward. It is true that inflation at time t jumps higher when

current and future output gaps jump higher, all else equal. However, if firms or workers

and unions take time to adjust their prices, then they are limited in how much they can

immediately raise their prices in response to an acute surge in output. Additionally, they

are forward-looking, so past output and inflation are sunk; only future output gaps matter

for how they set prices. If real GDP returns to its steady state value quickly, these future

output gaps may be small, even if past output gaps have been large. In this sense, price-

setters in the economy tend to fall “behind the curve” for the transitory-but-potent real

GDP expansions that transfers to high hand-to-mouth agents generate. By the time the

economy returns to steady state, cumulative real output can rise higher for the same rise in

the price level when it rises faster.

3.3. Heterogeneity Affects Households and GDP

Although the present value of inflation is set by government policy, MPC heterogeneity

in the TANK model leads the distribution of the transfers to strongly affects the path of
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output. In Appendix A.4.1, I show that the sequence of output gaps (Ŷt)t≥0 in the TANK

model will satisfy an intertemporal Keynesian cross of the kind described by Auclert et al.

(2024). Integrating the relationship forward, I show that transfers to spenders will have an

additional contemporaneous multiplier effect on GDP of 1/(1−µ) beyond what transfers to

savers induce for any two policies that generate the same path of real debt.

3.4. Nominal Debt and the Price Level

Understanding the price level sacrifice ratio requires one to understand the price level’s

relationship with nominal debt. To say that the change in the price level is almost invariant

to the targeting of active fiscal transfer payments is tantamount to stating that the eventual

level of nominal debt generated is invariant to the transfers’ targeting, so long as the real

debt level is stationary – as it is in most models. To see this, suppose a general equilibrium

model starts in steady-state. One can simply note that if B is the steady-state level of real

debt, pt is the price level, and Bn
t is the amount of nominal debt at time t, then

B =
Bn

−

p−
= lim

t→∞

Bn
t

pt

where Bn
−, p− denote the nominal bonds in circulation and the price level before a transitory

shock occurs.

The insight gained from stationary real debt is often limited because the evolution of

nominal debt Bn
t is itself an endogenous object. This is the case in my model as well: unlike

Hagedorn et al. (2019), the government in my model does not follow an exogenous nominal

debt target to establish determinacy. However, if fiscal transfers are sent out with a slow-

adjusting price level and nominal interest rates stay constant, nearly the same volume of

nominal debt is taken on regardless of where the real transfers go – and so the price level

responds nearly the same way in the long term. As I show in Section 5, if the shocks to

transfers to different groups are chosen such that they all generate the same asymptotic

nominal debt level, then they will all induce exactly the same change in the price level –

essentially by construction – but potentially different contributions to the sequence of output

gaps.

The fact that nominal debt is endogenous in the model also highlights why the long-term
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inflation dynamics can be more complicated in models where monetary policy is active. If

the nominal interest rate adjusts in response to the state of the economy, then this also

endogenously changes the nominal debt level induced by the policy, making the eventual

price level interact with the Taylor rule and related endogenous variables. This interaction

is absent under an interest rate peg with exogenous fiscal policy – making the long term rise

in the price level insensitive to other features of the economy.

4. A Heterogeneous Agent New Keynesian (HANK) Model

Given the basic intuition of Section 2, I next solve a calibrated incomplete markets

economy to verify that the insights from the stylized dynamics of the simple TANK model

carry over into a more realistic HANK environment. The experiment is largely the same: I

fix the present value of a surprise debt-funded active fiscal transfer and compare the rise in

the price level and the cumulative rise in real GDP when transfers go out to richer agents

who save versus poorer agents who spend. In the HANK model, however, transfers are

distributed contingent on households’ income, rather than a fixed “type” as in the TANK

model.

Time t ≥ 0 is continuous. At a high level, the economy is populated by households who

have the same preferences, but face borrowing constraints and different paths of idiosyncratic

labor income shocks that they cannot fully insure. These households save by holding long-

lived nominal government bonds and supply their labor to the market via decentralized

unions. The output sector is perfectly competitive; wages adjust with nominal rigidities,

such that labor demand and output are demand-determined. The government issues debt

to pay for transfer payments and does not necessarily raise taxes to keep the debt from

growing exponentially. A central bank sets nominal interest rates according to either a

Taylor rule or an interest rate peg. The numerical solutions are all for a perfect foresight

environment linearized around a nonstochastic steady state (NSS); once the shock is realized,

the transition dynamics are deterministic and known to the agents in the model.
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4.1. Households

A measure 1 continuum of households inhabit a Bewley-Aiyagari setting where they have

two dimensions of ex-post heterogeneity: their labor-augmenting productivity z (generating

income inequality) and their real asset position a (which agents endogenously determine

based on their consumption choices). The setting has become the workhorse for single-asset

HANK models like that of McKay et al. (2016). Households choose their consumption choice

c with an intertemporal elasticity of substitution of 1/γ and supply hours worked h according

to a rule set by unions, in so doing incurring labor disutility with a Frisch elasticity of η. The

government taxes labor income at a fixed rate of τ . If Vt(a, z) is a household’s value function

at time 0 given their asset position a at steady state bond prices and labor productivity z,

the household problem is

V0(a0, z0) = max
{ct}t≥0

E0

∫ ∞

0
e−ρt

[
c1−γ
t

1− γ
− ht(at, zt)

1+ 1
η

1 + 1
η

]
dt

s.t.
dat
dt

= (1− τ)wtztht(at, zt) + rtat +Mt(zt; ζt)− ct

d log(zt) = −θz log(zt)dt+ σzdWt,z

at ≥ 0.

Here, Wt is a classical Wiener process (Brownian motion), such that log labor income

follows an Ornstein-Uhlenbeck process in the non-stochastic steady state that reverts to the

mean at a rate of θz. The agents can receive transfers from the government Mt(zt, ζt) that

depend on their position in the income distribution and an aggregate fiscal shock ζt.

The household’s problem can be recursively formulated as a Hamilton Jacobi Bellman

(HJB) equation:

ρVt(a, z) =max
c

{[
c1−γ

1− γ
− ht(a, z)

1+ 1
η

1 + 1
η

]

+
∂Vt
∂a

(a, z) [(1− τ)wtzht(a, z) +Mt(zt; ζt)− c+ rta]

+
∂Vt
∂z

(a, z)z

[
1

2
σ2z − θz log(z)

]
+
∂2Vt
∂z2

(a, z)
1

2
σ2zz

2 +
∂Vt
∂t

(a, z)

} (5)

where households take the path of prices w and r as given and subsumed into the time

subscript of the value functions.
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The distribution of households over idiosyncratic states is µt(a, z); it evolves according

to the standard Kolmogorov Forward Equation (KFE)

∂µt
∂t

(a, z) =− ∂

∂a

(
dat
dt
µt(a, z)

)
− ∂

∂z

(
Et[dzt]

dt
µt(a, z)

)
+

1

2

∂2

∂z2

(
σ2z2µt(a, z)

)
. (6)

4.2. Fiscal Policy

The model’s fiscal authority collects aggregate taxes (net of transfers) equal to Tt; real

government expenditures Gt are included in the following equations for generality but are

set to be zero in equilibrium. The aggregate price level in the economy is pt.

The market value of real debt outstanding is Bt ≡ Bn
t /pt and evolves according to

backward-looking equation

dBt

dt
= −(Tt −Gt) + (it − πt)Bt. (7)

As a baseline, the fiscal authority in the model taxes labor income at a rate of τ , such

that if total effective labor employment in the economy is Lt and real wages are wt, total

income taxes are τwtLt per unit of time. Households also receive lump-sum transfers from

the government, which aggregate to total lump-sum transfers Mt. Total tax revenue is

Tt = τwtLt −Mt. (8)

In the nonstochastic steady state (NSS), the government balances its budget and rebates

transfers uniformly such that MNSS = τwLNSS − rNSSBNSS.

Outside of the steady state, transfers can either be made to those below median z (denoted

z0.50), above median z, or to all households:

Mt(z, ζt) =4YNSS ×
(
ζALL,t +

1

0.5
1{z ≤ z0.50}ζBELOW,t +

1

0.5
1{z > z0.50}ζABOVE,t

)
− κ (Bt −BNSS)

(9)

where ζALL,t, ζBELOW,t, ζABOV E,t are aggregate shocks that follow (14). The transfer shocks

are therefore scaled as a percentage of annual steady state GDP and are also scaled by the

mass of the recipients to represent the same amount of aggregate transfer spending.

The last term regulates a fiscal rule that determines whether or not fiscal policy is active or

passive. If κ > rNSS, then taxes automatically adjust to bring debt back to its nonstochastic
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steady state, making fiscal policy passive. However, if κ < rNSS, then inflation must stabilizes

debt, making fiscal policy active. In the main text of this paper, I set κ = 0, rendering fiscal

policy unambiguously active and only deviate from this assumption in Appendix B.

Total transfers aggregate naturally from their microeconomic counterparts:

Mt =

∫ ∫
Mt(z, ζt)µt(a, z)da dz (10)

4.3. Monetary Block

The central bank directly sets nominal interest rates in the economy according to

it = r∗ + ϕππt (11)

where r∗ is the interest rate that would prevail in equilibrium in the absence of any aggregate

shocks. The active fiscal model can be solved so long as the interest rate rule is “passive,”

such that ϕπ < 1. As such, I set ϕπ = 0 to examine the properties of the model economy

under an interest rate peg.

4.4. Firms and Price Setting

Labor is the only production input in the model economy, such that

Yt = Lt, (12)

where Yt is aggregate real output and Lt is the aggregate number of effective hours worked.

Final goods firms are perfectly competitive and face no friction in how they set prices to

maximize profits, making wage inflation equal to the final consumption goods’ inflation.

Output and employment are demand-determined due to nominal rigidities in the labor

market, which are in the style of the decentralized labor union environment of Auclert

et al. (2024), which is in turrn related to Hagedorn et al. (2019) (an earlier adopter of

sticky wages in a HANK setting) and a modification of Schmitt-Grohé and Uribe (2005).

A continuum of decentralized unions hires labor from households and resells it to firms,

who differentiate the unions with a constant elasticity of substitution εL. Labor supply is

demand-determined so that all households work the same number of hours (ht(a, z) = Lt/Z

where Z =
∫ ∫

zµ(a, z)da dz), and unions are subject to Rotemberg (1982) nominal wage
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pricing frictions. The result is a nominal forward-looking wage Phillips Curve, which is also

the overall Phillips Curve in the economy:

Et[dπt]

dt
= rtπt −

εℓ
θw

Lt

Z

∫ ∫ (
ht(a, z)

1
η − εℓ − 1

εℓ
(1− τ)zwtct(a, z)

−γ

)
da dz (13)

Inflation today is related to both expected inflation and the average cross-sectional wedge

between the disutility of labor and the utility of working for wages, marked down because

the unions internalize the effect of supplying more labor on their wage rate.

4.5. Policy Shocks

I assume that aggregate shocks mean-revert at constant rates. As such, they can be

written recursively via dζi,t = −θiζi,tdt, with the shock of type i at time 0 being given as ζi,0,

or solved forward as a sequence to write

ζi,t = e−θitζi,0. (14)

Monetary policy shocks revert at a rate of θMP, while all fiscal shocks revert at a common

rate of θTax.

4.6. Market Clearing

Aggregate consumption

Ct =

∫ ∫
ct(a, z)µt(a, z)da dz (15)

is equal to aggregate output:

Yt = Ct. (16)

Total hours worked are uniform across households:

ht(a, z) = Lt/Z. (17)

The asset market clears when net private wealth equal to aggregate government debt:∫ ∫
aµt(a, z)da dz = Bt. (18)
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4.7. HANK Equilibrium

If the amount of initial nominal bonds in the non-stochastic steady state is set exogenously

by the government prior to the realization of any shocks, then the initial price level is

determined so as to clear the real asset market, much as in Hagedorn (2016). Thereafter,

agents can recover the price level using the inflation realized after the initial time period –

such that the price level itself need not be tracked as a state variable in the perturbation

solution.

An equilibrium given a sequence of aggregate shocks (ζt)t≥0, an initial wealth and income

distribution µ0(a, z), and an initial debt level B0 is therefore a collection of sequences of

macroeconomic aggregates

(Ct, Lt, Yt, Bt)t≥0

and household-level variables and prices

(ct(a, z), ht(a, z),Mt(z, ζt), µt(a, z), wt, rt, it, πt)t≥0

where

i. saver consumption choices (ct(a, z))t≥0 solve (5) given prices and aggregates

ii. the distribution of households µt(a, z) evolves according to (6)

iii. labor allocations (h1,t) are consistent with the union rule (17)

iv. inflation πt is consistent with the unions’ maximization problem and resulting wage

Phillips Curve (13)

such that

1. Macro aggregates (Yt, Ct)t≥0 are consistent with production (12) and aggregation (15)

2. real wages wt are constant and real rates rt obey the Fisher equation rt = it − πt

3. nominal interest rates (it)t≥0 follow the central bank’s policy rule (11)
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4. Government taxes and transfers across the population and over time (Mt(z, ζt))t≥0

follow the rule (9) and aggregate to Mt and Tt via (10) and (8)

5. Government debt Bt given taxes Tt and real rates rt evolves according to (7)

6. The asset market clears, as in (18). By Walras’ law, this also implies goods market

clearing (16).

5. Calibration

I calibrate my model largely with parameters that are standard in the HANK literature;

they are displayed in Table 1. As in McKay et al. (2016), I calibrate the continuous time

income process parameters (θz, σ
2
z) via simulated method of moments to match the Floden

and Lindé (2001) estimates of the permanent component of annual wage autocorrelation and

autoregression variance, residualized for age, occupation, education, and other covariates. I

similarly calibrate the time discounting parameter ρ to match a real interest rate of 0.5%

quarterly, or roughly 2% annually. Real government debt outstanding is set to 67% of

annual GDP in the steady state, so that households’ average contemporaneous annualized

MPC out of a transfer roughly matches those reported in Auclert et al. (2024). I solve for

the model’s non-stochastic steady state using the methods outlined in Achdou et al. (2021);

select moments from this distribution are reported in Table 2.

The slope of the Phillips Curve is also reported in terms of the coefficient describing the

passthrough from marginal labor disutility to prices εL
θπ
htv

′(ht), where v is the households’

labor disutility, to be comparable with the parameters used in Auclert et al. (2024). In

Appendix D.2, I simulate the model with different slopes of the Phillips Curve to evaluate

the robustness of my findings to this key parameter. Increasing nominal rigidities predictably

amplifies the real effects of active fiscal expansion and smooths the transition of prices, while

decreasing nominal rigidities does the opposite. Even so, changing the degree of nominal

rigidity in the economy leaves the long-term price level dynamics essentially unchanged, nor

does it significantly alter the ordering of sacrifice ratios among the different transfer policies.

The marginal distributions of households along assets and incomes are displayed in Figure

1. Since the distribution of assets contains an atom at the borrowing constraint, I display the
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Table 1: General HANK Model Parameters

Parameter Symbol Value Source or Target

Households
Internally Calibrated:
Quarterly Time Discounting ρ 0.021 r = 2% Annually
Idiosyncratic Income Shock Variance σ2

z 0.017 Floden and Lindé (2001)
Idiosyncratic Shock Mean Reversion θz 0.034 Floden and Lindé (2001)

Assumed from Literature:
Relative Risk Aversion γ 2.0 McKay et al (2016)
Frisch Elasticity of Labor η 0.5 Chetty (2012)

Labor Market
Labor Elasticity of Substitution εL 10 Philips Curve slope of 0.07
Rotemberg wage adjustment cost θw 100 Philips Curve slope of 0.07

Government
steady state government debt BNSS 2.63 HANK iMPC0 ≈ 0.40
Geometric maturity structure of debt ω 0.043 Avg. maturity of 70 months
Income Tax Rate τ 0.25
Taylor Rule Coefficient ϕπ 0 Passive monetary policy (peg)
Fiscal Debt Coefficient κ 0 Active fiscal policy

Shocks
Mean reversion of fiscal shocks θTax 1.0

Table 2: HANK Non-Stochastic steady state Statistics

Description Symbol Value

Contemporaneous iMPC (Annual) 0.43
Debt to Annual Income BNSS/(4YNSS) 0.67
Correlation btw. Income and Assets Corr(a, z) 0.56
Share of households with a = 0

∫
µNSS(0, z)dz 0.27

Asset Gini Coefficient 0.75
Income Gini Coefficient 0.31

cumulative stationary distribution of assets, followed by the probability density of household

incomes. The third plot in Figure 1 depicts the aggregate intertemporal MPCs (“iMPCs”)

of households in the non-stochastic steady state in response to a year-long transfer that

integrates to 1. The iMPCs are aggregated to the annual level to make them comparable

with Figures 1 and 2 of Auclert et al. (2024). Households in my model spend roughly 43%

of the value of their initial transfer income in the first year when they receive it, 12% a

year later, 9% two years later, 7% a year after that, and so on. These iMPCs are roughly

consistent with the lower bound presented in Auclert et al. (2024), which uses data from the

Italian Survey of Income and Wealth. The plot’s dashed lines indicate households’ aggregate
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Figure 1: Marginal distributions and marginal propensities to consume in the non-stochastic steady state
(both intertemporally and in the cross-section). Assets refer to agents’ liquid wealth position a, while wages
refers to agents’ position in the skill distribution z.

propensity to spend when a transfer is announced 3 and 7 years in advance; the tent-shaped

spending patterns are again reminiscent of Auclert et al. (2024).

The final plot in Figure 1 depicts the cross-sectional distribution of households’ marginal

propensities to consume over 4 quarters out of a change to their liquid wealth, calculated

using the Feynman-Kac approach employed in Kaplan and Violante (2018). The average

roughly matches the first instantaneous iMPC to a contemporaneous shock reported in the

previous graph. As one might expect, most agents with no liquid assets and low income have

an MPC of close to 1. This MPC rapidly declines as household wealth increases, or (once

wage income becomes high enough) as wage income increases.

I assume fiscal shocks mean revert quickly, with θTax = 1.0. This is intended to better

replicate the speed with which stimulus checks may be sent out; after 4 quarters, the fiscal

shocks almost entirely dissipate. Since the path of the shock in the absence of further

perturbations may be described with equation (14), this also means that the cumulative effect

of an initial shock of ζTax0 = 0.01 has the interpretation of a 1%-of-annual-GDP disbursal of

lump-sum stimulus checks.2

I make fiscal policy active by setting κ = 0 and monetary policy passive by setting ϕπ = 0.

2For example, if the United States economy in 2019 were to be taken to be the non-stochastic steady
state, this would be a spending program of $210 billion. The 2021 American Rescue Plan’s direct stimulus
payments amounted to roughly double this amount.

18



6. HANK Results

6.1. Defining Price Level Sacrifice Ratios

In the numerical experiments wherein I send stimulus checks to high-income and low-

income households, I quantitatively show that the cumulation of output gaps is much more

sensitive than the change in the price level to household heterogeneity. To make these notions

precise, I construct CYt, the accumulated increase in GDP relative to the non-stochastic

steady state, as

CYt ≡
1

YNSS

∫ t

0
(Ys − YNSS)ds. (19)

Cumulative inflation Cπt, the total increase in the price level following the shock, can be

found by solving the differential equation dpt
dt

= πtpt forward in time with the initial price

level as given:

1 + Cπt = exp

(∫ t

0
πsds

)
. (20)

I define the cumulative price level sacrifice ratio, the accumulated trade-off as of time t

between annual real GDP and the change in the price level in response to a shock, as

SRt ≡ (CYt/4)/Cπt

Note that this ratio’s denominator is slightly different from other definitions of the “sac-

rifice ratio”; it is analogous to the inverse of the Phillips multiplier statistic introduced by

Barnichon and Mesters (2021) (but using the output gap directly instead of the fall in unem-

ployment). Historically, papers like Ball (1994b) measured sacrifice ratios as the cumulative

real annualized output gaps correlated with a 1% point decline in inflation over a certain

interval of time (perhaps a particular historical period over which shocks to aggregate supply

contributed relatively little to the variation of macroeconomic aggregates). By construction,

this was a backward-looking quantity; one measured inflation at the end of the interval and

subtracted out inflation at the start of the interval, and then divided the sum of output gaps

by the resulting quantity.

As discussed in Cochrane (2024), this empirical framework is difficult to map to the

modern macroeconomic models like the one discussed in this paper. In both my HANK and
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TANK, inflation is zero the moment before the shock, jumps upon impact, and then declines

back to zero afterward – leaving the pre-post difference zero asymptotically and rendering

the denominator of a conventional sacrifice ratio indeterminate. Moreover, positive output

gaps are associated with declining inflation after the shock, a conceptual disconnect flagged

in Ball (1994a). As such, if one measures initial inflation at the moment of the shock’s

impact instead of right before, the change in inflation is actually opposite the change in the

price level and produces a misleadingly negative “sacrifice ratio.”

This is because the standard New Keynesian Phillips Curve is entirely forward-looking; it

integrates such that inflation and future output gaps are related by
∫∞
t
e−ρ(t−s)Ŷsds/πt = 1/ν

(the inverse of the slope of the Phillips Curve). To reduce inflation by 1%, the present value

of future real GDP must decline by 1/ν, an ostensibly constant sacrifice ratio. However, this

is a very different quantity than the one measured by Ball (1994b); it pertains to the jump

in inflation at the start of the interval looking forward, not the end looking back.

As such, I proceed with my cumulative price level sacrifice ratio to measure the total

inflation-output trade-off. By replacing the change in the inflation rate in the denominator

with the overall change in the price level, I can again meaningfully compare inflation and

output over time. This statistic could also be empirically estimated – I provide a rough

calculation for the post-COVID period – but the reader should be aware that the sacrifice

ratio simulated in the model is slightly conceptually different from what past empirical work

has studied.

6.2. Policies that generate the same nominal debt

Suppose the government in the HANK economy decides – reasoning through the equi-

librium dynamics of their actions – to send a sequence of transfers to high or low-income

households that result in the same long-term nominal debt growth as a 1% of GDP sequence

of transfers to all agents in the economy. In the numerical simulation, this would amount to

a 1.05% of GDP sequence of transfers to those below median income, or a 0.955% of GDP

sequence of transfers to those above median income.

The cumulative output gaps resulting from such a nominal debt-invariant policy are

depicted in Figure 2. The red lines depicting the cumulative rise in the price level settle to
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Figure 2: Cumulative impulse response functions in a HANK model, but with real transfers scaled so that
the transfers schemes generate the same long-term nominal debt as a uniform transfer to all agents in the
economy.

exactly the same level in the second panel; the government designing policy shocks to reach

a certain nominal debt is equivalent to the government choosing a long-term price level.

Although the total cumulative inflation in all three scenarios is the same, MPC heterogeneity

leads transfers targeted to poorer households to generate larger cumulative real output gaps,

while transfers directed to richer households generate a smaller cumulative expansion.

In light of this, the price level sacrifice ratios entailed by the different policies are all

very different. Transfers sent to poor households raise cumulative annualized GDP by 0.52

percentage points for every 1% increase in the price level, but transfers to the low income

only raise cumulative output by 0.30 percentage points for the same long-term inflation.

6.3. Policies that send out the same exogenous real transfers

While governments do often try to assess the long-term debt burden of policies, forecast-

ing the endogenous evolution of nominal bonds in the economy is challenging in the real

world. Policies are more often described in terms of their direct fiscal consequences. What,

then, is the impact of sending active fiscal transfers amounting to 1% of annual GDP to the

low income, the high income, or uniformly across the economy?

I display the cumulative output gaps and increase in the price level for this experiment

in Figure 3; the unaccumulated impulse response functions are depicted in Figure 4. The

amount of long-term nominal debt generated by the different policies is different in this

experiment, and so the price levels do settle to slightly different values in the long term, as

depicted in the second panel of Figure 3. However, transfers with the same real value in an
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Transfers to
All

Transfers to
Low-Income

Transfers to
High-Income

1 yr 50 qtrs 1 yr 50 qtrs 1 yr 50 qtrs
CYt/4 0.66% 0.59% 0.90% 0.73% 0.43% 0.46%
Cπt 1.58% 1.47% 1.85% 1.40% 1.34% 1.54%
Sac. Ratio 0.42 0.40 0.49 0.52 0.32 0.30

Table 3: Cumulative annualized output gaps (CYt/4), inflation (Cπt), and sacrifice ratios for fiscal transfers
(amounting to 1% of annual GDP) to different groups in the active fiscal/passive monetary HANK model.

Figure 3: Cumulative impulse response functions in a HANK model. Shocks include 1% of annual GDP
increases in transfers to all agents, below-median income agents, and above-median income agents, respec-
tively.

active fiscal, passive monetary framework still lead to nearly the same amount of nominal

debt to be inflated away, even if they weren’t explicitly designed to do so a priori and

even in the presence of automatic stabilizers like income taxes. Quantitatively, the amount

of cumulative inflation generated by the different policies is therefore still very similar3

regardless of to whom the transfers were sent, while the paths of cumulative gains to output

are very different.

I report the accumulated quantities CYt/4, Cπt, and the price level sacrifice ratio at

different time horizons for the active fiscal/passive monetary setting in Table 3. The first

row details the cumulative sum of the output gaps as a percent of annual steady state

GDP, respectively accumulated up to 1 year and up to 50 quarters, for transfers to all,

below-median income, and above-median income households. Since the transfers are almost

entirely paid out after four quarters and accumulate to 1% of annual GDP, this row could

3Because the model is linear, the inflation lines in 3 are essentially just a -5% and +4.5% rescaling of the
low-income and high-income lines of 2, respectively, as they represent 1% of GDP transfers instead of 1.05%
and 0.955% transfers.
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also be read as the fiscal transfer multiplier of the different policy shocks. The total rise

in the price level for the different transfers and time horizons is reported in the next line.

Finally, I report the cumulative sacrifice ratio (the ratio of the first and second lines) in the

last row.

Examining the quantitative implications of the policies, transfers to below-median income

households boost cumulative annualized output gaps by more than twice as much as transfers

to above-median income households and 33% more than untargeted transfers in the first year.

After 50 quarters, the amount declines slightly as output overshoots – but transfers to low

income households still generate a 59% and 24% larger accumulation of real output gaps

than high income transfers and untargeted transfers, respectively. This is despite the fact

that the 50-quarter rise in the price level is nearly the same for both untargeted transfers

and transfers to low-income households, and actually 9% lower than the rise in the price level

associated with transfers to the high income (although in the first year, targeted transfers

to the low income do yield significantly more inflation).

In the short run, transfers to low-income agents generate not only a sharper spike in real

output following the shock, but also a sharper spike in inflation, as shown in the first two rows

of Figure 4. However, the ratio of output to inflation is still higher even in the short term

for transfers to the low income as compared to transfers for the high income or untargeted

transfers. Over a longer period of time, the inflation response is also less persistent when

the transfers are sent to high-MPC agents, in keeping with the intuition developed in earlier

sections.

What drives the expansion of real output in the active-fiscal/passive-monetary HANK

model after transfer payments go out? Perhaps unsurprisingly, the majority of the response

is driven by the increase in households’ aggregate demand following an increase in their

transfer income net of taxes – particularly because the persistence of the transfers is low.

In Figure 5, I decompose the output impulse response function into a component associated

with the households’ response to transfers themselves (in yellow), the path of real interest

rates r (in red) and changes in aggregate demand for labor L (in blue). The paths of each of

these inputs, determined in equilibrium, are taken as given by households; the colored regions

of the plot depict how each contributes to the total movement of real GDP, which is depicted
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Figure 4: Impulse response functions (unaccumulated) to policy shocks in the HANK environment. All
variables are presented as deviations from their quarterly values in the non-stochastic steady state except
for transfers, which are reported as a percentage of annual real GDP in the non-stochastic steady state.

Figure 5: Decompositions of the real output impulse response function in an active fiscal/passive monetary
HANK. Each channel represents the heterogeneous agents’ response to i) real interest rates and bond prices
(in red), ii) transfers (in yellow), and general equilibrium changes in labor demand (in blue). The colored
regions add up to the dashed black line.

in the black dashed line. While an increase in employment and labor income does contribute

to the expansion (and the increase in aggregate equilibrium labor is what produces the goods

that households consume), the rise in aggregate consumption is predominantly driven by the
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increase in net transfer income that high-MPC households receive (the policy’s direct effect).

When low-MPC households receive the checks, general equilibrium effects play a larger role

in the smaller real GDP response; households are motivated to spend following the decline

in real rates following inflation, and then to save again to rebuild their precautionary savings

following the boom once real rates of return have recovered.

How do these price-level sacrifice ratios compare to the data following the COVID-19

pandemic? If trend inflation was still 2% in the years following the pandemic, then the

Consumer Price Index rose by nearly 9.5% in excess of that trend from 2021Q2 to 2024Q2.

The sum of the quarterly output gaps estimated by the Congressional Budget Office during

that period accumulates to 4.4%, for a cumulative ratio of 0.47. As can be inferred from

Table 3, this real-world output/inflation ratio is roughly in line with a model scenario where

transfers are issued slightly disproportionately to low-income households. This is broadly

consistent with the fact that some of the actual federal stimulus in the period came from

expansions to child tax credits, unemployment insurance, and other existing welfare benefits.

Of course, other shocks besides changes to fiscal policy affected the U.S. during this time

period – and the model significantly over-predicts the amount of inflation conditional on a

$1.9 trillion stimulus package like the 2021 American Rescue Plan in the absence of other

forces affecting the economy.4 Even so, the model’s simulated macroeconomic trade-off

appears to be close to what occurred in the early 2020s.5

One could also calculate the cumulative effects in Figure 3 using the present value of

inflation and the present value of output gaps, instead of the definitions used in equations

(19) and (20). In the appendix, I show that this only slightly changes the picture; the

dispersion in the red price level lines shrinks by a factor of only one quarter. This indicates

that most of the small spread in the eventual price level (and eventual nominal bonds) in

Figure 3 is due to the presence of automatic stabilizers induced by income taxation, as

opposed to timing effects that follow when debt is inflated away earlier and faster.

4An untargeted stimulus package of slightly less than 8% of GDP results in an inflation multiplier of
roughly 1.65 after 12 quarters, exceeding the entire 10% rise in the price level observed in the data.

5I demonstrate the effect of changing the slope of the Phillips Curve in Appendix D.2 on the cumulative
impulse response functions and the price level sacrifice ratios.
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Figure 6: Cumulative GDP, inflation, and annualized price level sacrifice ratios in the HANK economy to a
similarly-calibrated RANK economy, when fiscal transfers are sent out to all agents.

6.4. Comparing HANK to RANK

As discussed in Section 3, incomplete markets and borrowing constraints do little to

change the accounting by which the equilibrium inflation must adjust the value of real ag-

gregate liquid assets back to their steady-state levels. In the absence of automatic stabilizers

that raise tax revenue from output gaps, the cumulative present value of inflation will be

exactly the same in complete and incomplete markets, so long as the initial debt and the

present value of the path of surpluses in both economies are the same. Incomplete markets

raise the average MPC in the economy, however, so the output response to an active fiscal

response in incomplete markets will be larger – raising cumulative sacrifice ratios in HANK

as opposed to RANK.

More realistic additions to the model, like income taxes, and potential differences in the

timing of inflation slightly complicate this picture but leave the overall message unchanged.

In Figure 6, I repeat the experiment of sending fast-reverting fiscal transfers valued at 1%

of GDP to all agents in the economy, but now in both the HANK setting and in a complete

markets RANK environment. The RANK model is calibrated to have the same steady-state

interest rate, debt-to-GDP ratio, and income tax profile as in the HANK setting.

In the first panel, the high MPCs of constrained households generated by HANK raise

the stimulative effect of the transfers on real output compared to RANK. Due to the Phillips’

curve, inflation arrives slightly more swiftly in the calibrated HANK, while income taxes also

draw down some of the new nominal private assets in the economy. Both of these forces make

cumulative inflation in HANK actually slightly lower in the long term, compared to RANK

– but the effect is again relatively small, and the price level rises by nearly the same amount
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in both economies. This too makes the cumulative sacrifice ratios after fifty quarters much

higher in HANK (0.40) compared to RANK (0.30). Naturally, the comparison is even more

stark if the transfers are targeted to low-income agents – while if transfers are targeted to

high income households, the sacrifice ratios in HANK and RANK settle to nearly the same

value (again referring to Table 3).

7. Discussion

Because low-income households have low liquid wealth and high marginal propensities

to consume, sending deficit-financed transfers to them leads to a sharp boost in output.

However, if the central bank does not raise nominal interest rates in response to inflation,

then the distribution of transfer recipients has little impact on how much inflation transpires.

Under an interest rate peg without a Taylor rule, two exogenous fiscal transfer programs

generate roughly the same amount of nominal debt regardless of their targeting. Real debt

in the model is stationary: inflation then accumulates until the nominal assets issued by the

government and held by households as assets have returned to steady state levels, regardless

of who received the funds. As such, cumulative inflation is not sensitive to targeting or

heterogeneity in MPCs.

Transfers to the low-income thus generate larger amounts of GDP relative to the amount

of inflation they produced, compared to when the checks go to wealthier high-income seg-

ments of the population. This is consistent with the baseline Phillips Curve; when output

rises quickly, firms take time to adjust their prices and respond to future expected output

gaps, not previous ones. This leads the overall rise in the price level to trail a sharp rise

in output. Conversely, this dynamic has strong implications for “sacrifice ratios”: abating

inflation by cutting transfers to the low-income depresses real GDP by much more than

similar inflation abatement accomplished by lump-sum tax increases on the rich, as sacrifice

ratios themselves are positively related to the speed with which the output gaps occur.

The intuition that the price level might strongly depend on how some households behave

more like “savers” or “spenders” after receiving their checks is also not quantitatively sup-

ported in a HANK model. As Auclert et al. (2024) notes, optimizing agents will eventually

want to spend the present value of whatever they receive, such that the present value of
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iMPCs aggregates to one, even if they smooth that consumption spending over time. Even-

tually, for the asset market to clear and for the economy to return to its non-stochastic

steady state, inflation occurs to bring nominal private assets back to stable real levels.

When this is the case, one can predict the long-term inflationary impact of a policy

without much knowledge of its distributional consequences or implications for employment

and output. But is this the case? Less conventional, but perhaps important, theoretical

complications could emerge if models contain behavioral agents with MPCs that are truly

zero, such as in Auclert et al. (2023b), leading them to act as a permanent real asset sink.

Inflation might play a less predictable, and perhaps reduced, role in the equilibrium dynamics

of such models. Empirically, there also appears to be an opening for more work examining

how inflation does or does not ensue when governments do not have a credible plan to pay

down their debt through conventional means following unexpected deficit spending. Ulti-

mately, recent theories of the price level and models with meaningful heterogeneity present

new ways to understand how fiscal and monetary policy interact to influence macroeconomic

aggregates – potentially with strong implications for policy in the real world.
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Appendix A. Simple Model Derivations

Appendix A.1. 5 Equations for a Simple TANK Model

In this section, I sketch a simple TANK model to intuit how transfers to high MPC

agents might yield more output but very similar levels of inflation compared to transfers

to low MPC households when fiscal policy is active and monetary policy is passive. The

simple model includes two households, a government that can send exogenous transfers to

each by running deficits and borrowing, and a basic New Keynesian Phillips Curve. For

simplicity, I here consider a model that establishes determinacy using the FTPL, while my

HANK model’s determinacy comes from the DTPL. However, I parameterize and simulate

a slightly more complicated TANK model in ?? that can display either a DTPL equilibrium

or an FTPL equilibrium and show that the results for both are qualitatively similar.

The first representative household is a measure 1−µ continuum of forward-looking agents

who collectively hold the stock government debt (a “saver” household, labeled 1), and is of

measure 1−µ. These households receive transfersM1,t from the government, which are equal

to zero in the non-stochastic steady state, and additionally pay the government’s steady state

interest expense TNSS. They choose consumption c1,t in accordance with an Euler equation,

derived in Appendix A, where ρ is the rate of time discounting, γ−1 is the elasticity of

intertemporal substitution, and rt is the real interest rate:

Et[dc1,t]

dt

1

c1,t
= γ−1 [rt − ρ] . (A.1)

The second, of mass µ, is a continuum of households who are constrained to consume their

income every period. These agents (“spenders,” labeled 2), set their consumption c2,t equal

to labor income from working plus income from transfers they receive from the government.

c2,t = Yt +M2,t (A.2)

where Yt = Lt is aggregate output and hours worked, aggregate demand is

Yt = (1− µ)c1t + µc2t (A.3)
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and the real wage rate is equal to 1 – as would be the case in a model where wages are

nominally rigid and the output price sector is perfectly competitive, making the real wage

perfectly acyclic.

The government issues nominal bonds of real value Bt at a real interest rate of rt to pay

for deficits. Tax revenue is Tt = TNSS− 1
1−µ

M1,t− 1
µ
M2,t, where TNSS = rNSSBNSS. As such,

the real stock of government debt evolves according to

dBt

dt
= −Tt + rtBt (A.4)

and the central bank fixes the nominal interest rate, such that it = i. With the Fisher

equation, this means that rt = i− πt, where πt is the rate of inflation.

The New Keynesian Phillips Curve is then

ρπt =
Et[dπ]

dt
+ νŶt (A.5)

where Ŷt is the percent deviation of real GDP from its value in the steady state (the output

gap) ν is the slope of the Phillips Curve.

Suppose now that the economy is in steady state (with zero inflation and no transfers

besides the lump-sum ones used to balance the budget) at time t when the government

announces that it intends to send transfers to one household but not the other by temporarily

raising either M1,t or M2,t from their steady state values by running deficits that will never

be repaid with future taxes. After a short period of time, these deficits return to zero. To

analyze such an experiment, I consider the equations one-by-one.

Appendix A.2. The Phillips Curve and Cumulative Inflation and Output Gaps

Equation (A.5) can be integrated forward to write

πt = ν

∫ ∞

t

e−ρsŶsds
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Accumulating inflation from time 0 to a terminal time T , I define CπT as the rise in the price

level by time T and approximate it as

CπT ≡ exp

(∫ T

0

πtdt

)
− 1 ≈

∫ T

0

πtdt = ν

∫ T

0

(∫ ∞

t

e−ρsŶsds

)
dt

The timing of the output gaps matter. The region being integrated over is the triangle

defined by 0 ≤ t ≤ T and t ≤ s ≤ ∞. This is the same region as the one bounded by

0 ≤ s ≤ T and 0 ≤ t ≤ min(s, T ). Changing the order of integration,

= ν

∫ ∞

0

∫ min(s,T )

0

e−ρsŶsdt ds = ν

∫ T

0

se−ρsŶsds+ ν

∫ ∞

T

Te−ρsŶsds

and taking T → ∞, ∫ ∞

0

πtdt = ν

∫ ∞

0

te−ρtŶtdt (A.6)

Suppose the output gaps jump and decay back to steady state at a rate of λY , such that

Ŷt = λe−λtCY∞, where CY∞ ≡
∫∞
0
Ŷtdt is the cumulative output gap over time. In that case,

∫ ∞

0

πtdt = ν

∫ ∞

0

te−ρtλe−λtCY∞dt = νλCY∞
∫ ∞

0

te−(ρ+λ)tdt

such that

Cπ∞/CY∞ = ν
λ

(λ+ ρ)2

If ρ ≈ 0, then Cπ∞/CY∞ ≈ ν/λ. The asymptotic amount of cumulative inflation relative to

cumulative output tends to increase with the slope of the Phillips Curve, but decrease when

output rises faster. More output in a given time increment increases the amount of inflation,

but nominal rigidities imply that faster growth in output mean that prices cannot, in a sense

keep up. The Phillips Curve is forward looking; previous output gaps are already sunk from

the perspective of the firm. If a lot of growth happens quickly and then subsides, that past

growth no longer matters for period t inflation; all that matters are future output gaps.

With similar logic, the present value of inflation discounted by ρ is

∫ ∞

0

e−ρtπtdt =
ν

ρ

∫ ∞

0

(e−ρt − e−2ρt)Ŷtdt
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Appendix A.3. Debt Evolution: Inflation and Nominal Debt

Begin with the debt evolution equation:

dBt

dt
= −Tt + rtBt

Solving the ODE forward with an integrating factor of
∫ τ

t
rsds and assuming the real value

of debt does not explode,

Bt =

∫ ∞

t

e−
∫ τ
t rsdsTτdτ

Dividing by steady state real debt, taxes, and real interest rates as (B, T, r) (no time indexes)

and writing Bt = BeB̂t , Tt = TeT̂t , rt = r̂t + r,

eB̂t =

∫ ∞

t

e−
∫ τ
t (r̂s+r)ds T

B
eT̂τdτ

Log-linearizing, including writing exp
(
−
∫ τ

t
r̂sds

)
≈ 1−

∫ τ

t
r̂sds

(1+B̂t) ≈
T

B

∫ ∞

t

e−(τ−t)r

(
1−

∫ τ

t

r̂sds

)
(1+T̂τ )dτ ≈ T

B

∫ ∞

t

e−(τ−t)r

(
1−

∫ τ

t

r̂sds+ T̂τ

)
dτ

where the second approximation follows from the cross-terms of the hatted variables being

very small. Note that with a u = −(τ−t)r substitution, T
B

∫∞
t
e−(τ−t)rdτ = 1

r
T
B

∫ −∞
0

eudu = 1.

As such,

B̂t ≈
T

B

∫ ∞

t

e−(τ−t)r

(
T̂τ −

∫ τ

t

r̂sds

)
dτ

Note that as rt = it − πt, it follows that r̂t = ît − π̂t, where the hatted variables denote

deviations from the non-stochastic steady state.

B̂t ≈
T

B

∫ ∞

t

e−(τ−t)r

(
T̂τ −

∫ τ

t

(̂is − π̂s)ds

)
dτ

If the central bank sets interest rates according to a Taylor rule like ît = ϕππ̂t but ϕπ < 1,

then

B̂t ≈
T

B

∫ ∞

t

e−(τ−t)r

(
T̂τ + (1− ϕπ)

∫ τ

t

π̂sds

)
dτ
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such that

(1− ϕπ)

∫ ∞

t

e−(τ−t)r

(∫ τ

t

π̂sds

)
dτ =

1

r
B̂t −

∫ ∞

t

e−(τ−t)rT̂τdτ.

The region demarcated by t ≤ s ≤ τ and t ≤ τ ≤ ∞ can be equivalently demarcated by

s ≤ τ ≤ ∞ and t ≤ s ≤ ∞. As such,

∫ ∞

t

e−(τ−t)r

(∫ τ

t

π̂sds

)
dτ =

∫ ∞

t

∫ ∞

s

e−(τ−t)rπ̂sdτ ds =

∫ ∞

t

π̂s

(∫ ∞

s

e−(τ−t)rdτ

)
ds

=
1

r

∫ ∞

t

e−(s−t)rπ̂sds

Using the fact that r = T
B
:

(1− ϕπ)

∫ ∞

t

e−(τ−t)rπ̂τdτ = B̂t −
T

B

∫ ∞

t

e−(τ−t)rT̂τdτ. (A.7)

Setting ϕπ = 0 yields the expression in the main text.

Appendix A.3.1. Example: Exponentially decaying inflation

Suppose Cπτ = (1 − e−λπ(τ−t))Cπ∞ for τ ≥ t. Note that this implies πt jumps by a

factor of λCπ∞ on impact, and mean reverts with an exponential rate of λ, such that πτ =

λπe
−λπ(τ−t)Cπ∞. Then the present value of the path of inflation is

∫ ∞

t

e−(τ−t)rπ̂τdτ =

∫ ∞

t

e−(τ−t)(r+λπ)λπCπ∞dτ =
λπ

r + λπ
Cπ∞

such that ∫ ∞

t

π̂τdτ = −
(
1 +

r

λ

) T
B

∫ ∞

t

e−(τ−t)rT̂τdτ.

Note that r T
B

= r2 ≈ 0 when r is small, so the effect of the timing of the output gaps on

cumulative inflation is small if inflation mean reverts with a half life of a few quarters.
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Appendix A.4. TANK Euler Equation

I derive the saver household’s Euler equation with bonds in the utility function; to obtain

the standard Euler equation, I can set ψ = 0. For clarity in the following section, I drop the

“1” subscripts from the attendant variables, but the quantities in question of course pertain

to agent 1 in the simple TANK model. The saver household’s problem is

max
(c1,t)t≥0

E
∫ ∞

0

e−ρt

 c1−γ
1,t

1− γ
−
h
1+ 1

η

1,t

1 + 1
η

+ ψ
a1−γb
t

1− γb

 dt
s.t.

dat
dt

= (1− τ)wth1,t + rtat +M1,t − ct

lim
T→∞

E[e−
∫ T
0 rtdtaT ] ≥ 0

(A.8)

The Hamilton-Jacobi Bellman equation is (suppressing the value function’s dependence on

aggregate shocks by subsuming them into the time index)

ρVt(a) = max
c1,t


 c1−γ

1,t

1− γ
−
h
1+ 1

η

1,t

1 + 1
η

+ ψ
a1−γb
t

1− γb

+
∂Vt(a)

∂a
[(1− τ)wth1,t + rtat +M1,t − ct] +

Et[∂Vt(a)]

∂t


Taking first-order conditions,

c−γ
1,t =

∂Vt(a)

∂a

And with the Envelope Theorem,

ρ
∂Vt(a)

∂a
=ψa−γb

t +
∂

∂a

(
∂Vt(a)

∂a
[(1− τ)wth1,t + rtat +M1,t − ct]

)
+

Et[∂(∂Vt(a)/∂a)]

∂t

=ψa−γb
t +

∂2Vt(a)

∂a2
[(1− τ)wth1,t + rtat +M1,t − ct] + rt

∂Vt(a)

∂a
+

Et[d(∂Vt(a)/∂a)]

∂t

⇒ (ρ− rt)
∂Vt(a)

∂a
= ψa−γb

t +
∂2Vt(a)

∂a2
da

dt
+

Et[d(∂Vt(a)/∂a)]

∂t

The total time derivative of the expected shadow price of consumption ∂Vt(a)
∂a

is

Et[d(∂Vt(a)/∂a)]

dt
=
∂2Vt(a)

∂a2
da

dt
+

Et[∂(∂Vt(a)/∂a)]

∂t
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such that the shadow price evolves according to

⇒ (ρ− rt)
∂Vt(a)

∂a
= ψa−γb

t +
Et[d(∂Vt(a)/∂a)]

dt

Plugging in the first-order condition,

⇒ (ρ− rt)c
−γ
1,t = ψa−γb

t +
Et[d(c

−γ
1,t )]

dt

where with the chain rule,
Et[d(c

−γ
1,t )]

dt
= −γc−γ−1

1,t
Et[dc1,t]

dt
. Rearranging,

Et[dc1,t]

dt

1

c1,t
= γ−1

[
rt + ψcγ1,ta

−γb
t − ρ

]
.

Appendix A.4.1. The saver household’s linearized policy function

The saver household’s budget constraint states that

da

dt
= rtat + yt − ct

where a is the household’s asset position, and yt is their total income (including transfers).

Using e−
∫ t
τ rsds as an integrating factor,

e−
∫ t
τ rsds

da

dt
− e−

∫ t
τ rsdsrtat = e−

∫ t
τ rsds[yt − ct]

⇒ d

dt

[
e−

∫ t
τ rsdsat

]
= e−

∫ t
τ rsds[yt − ct]

Integrating forward to time T ,

∫ T

τ

d

dt

[
e−

∫ t
τ rsdsat

]
dt =

∫ T

τ

e−
∫ t
τ rsds[yt − ct]dt

such that

e−
∫ T
τ rsdsaT − e−

∫ τ
τ rsdsaτ =

∫ T

τ

e−
∫ t
τ rsds[yt − ct]dt
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Thus

aτ =

∫ T

τ

e−
∫ t
τ rsds[ct − yt]dt+ e−

∫ T
τ rsdsaT

And since the consumer’s TVC and no-Ponzi condition stipulates limT→∞ Eτ [e
−

∫ T
τ rsdsaT ] =

0,

at = Et

[∫ ∞

t

e−
∫ τ
t rsds[cτ − yτ ]dτ

]
where I have interchanged the τ and t indexes, for clarity. Households choose assets to fund

the expected present value of their consumption that their expected future income will not

cover.

Et

[∫ ∞

t

e−
∫ τ
t rsdscτdτ

]
= at + Et

[∫ ∞

t

e−
∫ τ
t rsdsyτdτ

]
Log linearizing around the NSS,

Et

[∫ ∞

t

e−(τ−t)r−
∫ τ
t r̂sdsceĉτdτ

]
= aeât + Et

[∫ ∞

t

e−r(t−T )−
∫ τ
t r̂sdsyeŷτdτ

]

Et

[∫ ∞

t

e−(τ−t)r

(
1−

∫ τ

t

r̂sds

)
c(1 + ĉτ )dτ

]
= aeât+Et

[∫ ∞

t

e−(τ−t)r

(
1−

∫ τ

t

r̂sds

)
y(1 + ŷτ )dτ

]

Et

[
c

∫ ∞

t

e−(τ−t)r

(
1−

∫ τ

t

r̂sds+ ĉτ

)
dτ

]
= a(1+ât)+Et

[
y

∫ ∞

t

e−(τ−t)r

(
1−

∫ τ

t

r̂sds+ ŷτ

)
dτ

]

Et

[
c

∫ ∞

t

e−(τ−t)r

(
ĉτ −

∫ τ

t

r̂sds

)
dτ

]
= aât + Et

[
y

∫ ∞

t

e−(τ−t)r

(
ŷτ −

∫ τ

t

r̂sds

)
dτ

]
and since at steady state y = c,

∫ ∞

t

e−(τ−t)rEt [ĉτ ] dτ =
a

y
ât +

∫ ∞

t

e−(τ−t)rEt [ŷτ ] dτ

The Euler equation can then be log-linearized, with the understanding that r = ρ:

c
Et[dĉt]

dt
= γ−1 [r(1 + r̂t)− ρ] c(1 + ĉt) ⇒ Et[dĉt]

dt
= γ−1r̂t

Taking expectations as of time τ < t,

Eτ [dĉt]

dt
= γ−1Eτ [r̂t]
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such that integrating forward,

∫ T

τ

Eτ [dĉt]

dt︸ ︷︷ ︸
Eτ [ĉT ]−cτ

=

∫ T

τ

γ−1Eτ [r̂t]dt

and returning to my standard time index notation,

Eτ [ĉτ ] = ct +

∫ τ

t

γ−1Et[r̂s]ds

Substituting into the previous intertemporal budget constraint,

∫ ∞

t

e−(τ−t)r

(
ct +

∫ τ

t

γ−1Et[r̂s]ds

)
dτ =

a

y
ât +

∫ ∞

t

e−(τ−t)rEt [ŷτ ] dτ

⇒
∫ ∞

t

e−(τ−t)rctdτ +

∫ ∞

t

e−(τ−t)r

(∫ τ

t

γ−1Et[r̂s]ds

)
dτ =

a

y
ât +

∫ ∞

t

e−(τ−t)rEt [ŷτ ] dτ

Changing the order of integration in the second integral and solving the first:

⇒ 1

r
ct + γ−1

∫ ∞

t

(∫ ∞

s

e−(τ−t)rdτ

)
Et[r̂s]ds =

a

y
ât +

∫ ∞

t

Et [ŷτ ] e
−(τ−t)rdτ

⇒ 1

r
ct + γ−11

r

∫ ∞

t

e−(s−t)rEt[r̂s]ds =
a

y
ât +

∫ ∞

t

Et [ŷτ ] e
−(τ−t)rdτ

And since in the simple TANK model r = ρ and r̂t = ît − π̂t:

ct = ρ

∫ ∞

t

e−(τ−t)rEt [ŷτ ] dτ + ρ
a

y
ât − γ−1

∫ ∞

t

e−(τ−t)rEt [̂iτ − π̂τ ]dτ (A.9)

The forward-looking household’s linearized MPC out of a NPV income shock of 1 is equal to

ρ, if real interest rates are unchanged. This is also the household’s MPC out of liquid wealth,

where the liquid wealth change is also in terms of a percentage of steady state income. Note

that from the perspective of when a shock is realized, ât = 0 if the stock of the household’s

savings does not jump on impact.
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Appendix A.5. Combining Equations

Suppose nominal interest rates are fixed and the path of surpluses is exogenously set for

active fiscal policy. Then, the second term is equal to the (negative) present present value

of future inflation, which is from the section on the government budget deficit equal to the

present discounted value of expected deficits.

ĉt = ρ

∫ ∞

t

e−(τ−t)rEt [ŷτ ] dτ + ρ
a

y
ât + γ−1

(
B̂t −

T

B

∫ ∞

t

e−(τ−t)rEt[T̂τ ]dτ

)
(A.10)

Deficits induce inflation which entail a reduction in real rates, stimulating intertemporal

substitution and consumption apart from the change in income.

Appendix A.6. Intertemporal Keynesian Cross (TANK)

If total GDP is

Yt = (1− µ)c1t + µc2t = (1− µ)y1t + µy2t = Lt

and c2t = y2t, such that c1t = y1t, then

Y eŶt = (1− µ)y1ŷ1t + µy2ŷ2t ⇒ Ŷt = (1− µ)
y1
Y
ŷ1t + µ

y2
Y
ŷ2t

where htm income is

y2t = wtLt − T2t ⇒ y2e
ŷ2t = wY eŵt+Ŷt − T2e

T̂2t

⇒ y2ŷ2t = wY (ŵt + Ŷt)− T2T̂2t

If wt = 1,

⇒ ŷ2t =
Y

y2
Ŷt −

T2
y2
T̂2t

Thus

Ŷt = (1− µ)
y1
Y
ŷ1t + µ

y2
Y

(
Y

y2
Ŷt −

T2
y2
T̂2t

)
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(1− µ)Ŷt = (1− µ)
y1
Y
ŷ1t − µ

T2
Y
T̂2t ⇒ Ŷt =

y1
Y
ŷ1t −

µ

1− µ

T2
Y
T̂2t

ŷ1t =
Y

y1
Ŷt +

µ

1− µ

T2
y1
T̂2t

Substituting this into the sequential policy function,

Y

y1
Ŷt +

µ

1− µ

T2
y1
T̂2t = ρ

∫ ∞

t

e−(τ−t)rEt

[
Y

y1
Ŷt +

µ

1− µ

T2
y1
T̂2t

]
dτ+

ρ
a

y1
ât + γ−1

(
B̂t −

T

B

∫ ∞

t

e−(τ−t)rEt[T̂τ ]dτ

) (A.11)

such that

Ŷt = ρ

∫ ∞

t

e−(τ−t)rEt

[
Ŷt

]
dτ+

+ ρ
a

Y
ât +

y1
Y
γ−1

(
B̂t −

T

B

∫ ∞

t

e−(τ−t)rEt[T̂τ ]dτ

)
+ ρ

µ

1− µ

∫ ∞

t

e−(τ−t)rEt

[
T2
Y
T̂2t

]
dτ − µ

1− µ

T2
Y
T̂2t

(A.12)

which, since at = Bt for the asset market to clear and r = ρ, implies

Ŷt =ρ

∫ ∞

t

e−(τ−t)ρEt[Ŷt]dτ − ργ−1y1
Y

∫ ∞

t

e−(τ−t)ρEt[T̂τ ]dτ +

(
y1
Y
γ−1 + ρ

B

Y

)
B̂t

+ ρ
µ

1− µ

∫ ∞

t

e−(τ−t)ρEt

[
T2
Y
T̂2t

]
dτ − µ

1− µ

T2
Y
T̂2t

(A.13)

With a small change in the notation,

Ŷt =ρ

∫ ∞

t

e−(τ−t)ρEt[Ŷτ ]dτ + γ−1Γ1

(
B̂t − ρ

∫ ∞

t

e−(τ−t)ρEt[T̂τ ]dτ

)
+ ρ

B

Y
B̂t

+ ρ
1

1− µ

∫ ∞

t

e−(τ−t)ρEt

[
T̂ Spender
τ

]
dτ − 1

1− µ
T̂ Spender
t .

(A.14)

Here, Γ1 is the share of income received by saver agents in the steady-state and γ is one over

the savers’ intertemporal elasticity of substitution. T̂ Spender
t = µT2T̂2t/Y is the amount of

taxes above their steady-state values as a percentage of steady-state GDP levied on spender

households in particular. Given an exogenous sequence of tax policy and a corresponding

sequence of government debt pinned down by (7) and (3), (A.14) constitutes an intertemporal

Keynesian cross of the kind described by Auclert et al. (2024).
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The first term of equation (A.14) reflects the MPC of forward-looking savers out of current

and future income, ρ. The second term is the effect on aggregate demand from the change

in real rates that comes from inflating away current debt and future deficits. The third term

represents savers’ MPC out of their current liquid assets, times those liquid assets.

The second line of (A.14) depicts how heterogeneity affects the aggregate dynamics of real

GDP. The fourth term adjusts for how expected future taxes levied on spender households

do not directly affect contemporaneous aggregate demand, even though they come out of

households’ future incomes. The last term describes the contemporaneous transfer multiplier

that arises from taxing (or when negative, sending transfers to) spender households. Since

the spender households have an MPC of one, the multiplier effect of sending transfers to

them is similar to a multiplier for government expenditures. This term is increasing in µ;

when spender households make up a larger share of the economy, sending stimulus checks

to them (inducing some −T̂ Spender
t ) directly increases contemporaneous aggregate demand,

expenditures, income, and production.

Appendix A.7. Solving the TANK IKC

Let

G1(t) =

∫ ∞

t

e−(τ−t)ρEt[Ŷτ ]dτ

G2(t) =

∫ ∞

t

e−(τ−t)ρEt

[
µT2
Y

T̂2τ

]
dτ

It follows that

G′
1(t) =

d

dt

∫ ∞

t

e−(τ−t)ρEt[Ŷτ ]dτ = −Et[Ŷt] +

∫ ∞

t

d

dt
[e−(τ−t)ρEt[Ŷτ ]]dτ = −Ŷt + ρG1(t)

G′
2(t) =

d

dt

∫ ∞

t

e−(τ−t)ρEt

[
µT2
Y

T̂2τ

]
dτ = −µT2

Y
Et[T̂2t] + ρG2(t)
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And so

0 =

G′
1(t)︷ ︸︸ ︷

ρ

∫ ∞

t

e−(τ−t)ρEt[Ŷt]dτ − Ŷt+

f(t)︷ ︸︸ ︷
−ργ−1y1

Y

∫ ∞

t

e−(τ−t)ρEt[T̂τ ]dτ +

(
y1
Y
γ−1 + ρ

B

Y

)
B̂t

+ ρ
1

1− µ

∫ ∞

t

e−(τ−t)ρEt

[
µT2
Y

T̂2t

]
dτ − 1

1− µ

µT2
Y

T̂2t︸ ︷︷ ︸
1

1−µ
G′

2(t)

(A.15)

it follows that

G′
1(t) = − µ

1− µ
G′

2(t) + f(t)

Integrating from t0 to ∞,

∫ ∞

t0

G′
1(t)dt = − µ

1− µ

∫ ∞

t0

G′
2(t)dt+

∫ ∞

t0

f(t)dt

lim
t→∞

G1(t)−G1(t0) = −
[

1

1− µ
lim
t→∞

G2(t)−
1

1− µ
G2(t0)

]
+

∫ ∞

t0

f(s)ds

such that

G1(t) +
1

1− µ
G2(t) +

∫ ∞

t

f(s)ds = 0

Multiplying by ρ and subtracting from the original expression,

0 = G′
1(t)− ρG1(t) +

1

1− µ
[G′

2(t)− ρG2(t)] + f(t)− ρ

∫ ∞

t

f(s)ds

0 = −Ŷt −
1

1− µ
T̂ Spend
t + f(t)− ρ

∫ ∞

t

f(s)ds

such that

Yt = − 1

1− µ
T̂ Spend
t + f(t)− ρ

∫ ∞

t

f(s)ds

47



From there,

∫ ∞

t

f(s)ds =

∫ ∞

t

[
−ργ−1y1

Y

∫ ∞

s

e−(τ−s)ρEs[T̂τ ]dτ +

(
y1
Y
γ−1 + ρ

B

Y

)
B̂s

]
ds

= −ργ−1y1
Y

∫ ∞

t

∫ ∞

s

e−(τ−s)ρEs[T̂τ ]dτds+

(
y1
Y
γ−1 + ρ

B

Y

)∫ ∞

t

B̂sds

= γ−1y1
Y

∫ ∞

t

[e−(τ−t)ρ − 1]Eτ [T̂τ ]dτ +

(
y1
Y
γ−1 + ρ

B

Y

)∫ ∞

t

B̂τdτ

Simplifying further,

Yt =− 1

1− µ
T̂ Spend
t − ργ−1y1

Y

∫ ∞

t

[2e−(τ−t)ρ − 1]Et[T̂τ ]dτ

+

(
y1
Y
γ−1 + ρ

B

Y

)(
B̂t − ρ

∫ ∞

t

B̂τdτ

)
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Appendix B. Determinacy of the HANK Model Under Different Policy Envi-

ronments

Both Auclert et al. (2023a) and Hagedorn (2024) propose tests for the uniqueness and

determinacy of a linearized rational expectations model using a criterion based on Onatski

(2006), which can handle models with theoretically infinite lags and leads. For a model with

endogenous states yt and exogenous states xt that takes the form

∞∑
k=−∞

AkEtyt−k = Γxt

Onatski (2006) proposes constructing the complex-valued criterion function

det Â(λ) = det

[
∞∑

k=−∞

Ake
ikλ

]
(B.1)

where i =
√
−i is Euler’s constant and k is the number of lags (such that the coefficients are

presented going back in time relative to t). As such, Â(λ) is essentially the discrete6 Fourier

transform of the model’s time indexed matrix coefficients, and so describes the phase and

amplitude of different frequencies λ ∈ [0, 2π] that generate the coefficients. He then defines

the winding number of the criterion function as the contour integral of the function evaluated

6For a continuous time system, the analogous model would be∫ ∞

−∞
AτEtxt−τdτ = Γzt

and a criterion that uses the continuous Fourier transform

Â(λ) =

∫ ∞

−∞
Aτe

iλτdτ.

However because my numerical solution of the model is discretized for time grid points of a fixed interval,
this is essentially tantamount to using the discrete formulation, but with the rotation re-scaled by the size
of the time step ∆t, as t = ∆t× k, such that the criterion function becomes

det Â(λ) = det

[ ∞∑
k=−∞

Ake
ikλ∆t∆t

]
.

Since the sequence space numerical solution of my model is essentially a discrete-time system on the computer,
I evaluate its Onatski (2006) criterion as one would a discrete-time model.
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over [0, 2π] – tantamount to evaluating the Z (Laplace) transformation of the coefficients

over the unit circle in the complex plane – which quantifies how many times the graph of

the function encircles the origin. For a large class of economic models the author terms

“generic,”7 the model has a unique solution if the winding number is zero such that the

graph of the criterion function from [0, 2π] does not enclose the origin.

As Auclert (2018) discusses, the intuition is similar to that of the Blanchard and Kahn

(1980) conditions. If the winding number is equal to zero, then the criterion function has

as many zeros as poles outside of the unit circle via the Cauchy argument principle, and

therefore essentially has as many explosive roots as non-predetermined variables. If the

function wraps around the origin counter-clockwise (such that it has a positive winding

number) then the model has no solution; if it wraps around the origin counter-clockwise

(such that it has a negative winding number), then there exist a multiplicity of solutions.

However, the original Onatski (2006) criterion was designed for time-invariant systems,

where only the difference in time determined the system’s interaction with its own leads

and lags. For the sequence-space Jacobian method proposed by Auclert et al. (2021), this

requires that the sequence space Jacobian matrix is Toeplitz, a property that it does not

generally have. However, Auclert et al. (2023a) note that HANK models typically have

“quasi”-Toeplitz structure, in that the response of the system at time t to a future perfect

foresight shock at time s becomes largely invariant to the precise date s and instead only

depends on s− t. Different future shocks, in other words, begin to look like time-transposed

versions of one another. Auclert et al. (2023a) then argue that they can approximate

Ak = lim
t→∞

Ak,t

where Ak are the elements of the sequence-space Jacobian matrix that the endogenous states

at time t to their values k periods in the past. The authors then impose the Onatski (2006)

criterion on the system’s response to a future shock and argue that it provides a check for

the determinacy of the system overall.

7Onatski (2006) defines models as “generic” where all of the time shift components of the Wiener-Hopf
factorization of the criterion, called partial indexes, are either zero or of the same sign.
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Hagedorn (2023) takes a similar, but slightly different, approach. The author employs

a dimension reduction routine to the equilibrium and models the economy such that agents

do not track the whole distribution, but instead only track the aggregate level of assets. In

doing so, the agents forecast prices in the economy under the assumption that the future

distribution looks like the steady state one – but with all of the other agents’ wealth scaled

up or down by the aggregate asset position. If the aggregate asset position is included as a

state variable, the simplified system becomes truly Toeplitz – such that the Onatski (2006)

criterion may be straightforwardly applied.

Lastly, Bayer and Luetticke (2020) uses a completely different numerical approach and

suggests solving HANK models in state-space using a dimension reduction strategy similar

to the one employed by Reiter (2009). In the last section of this appendix, I detail the steps

and how it may be used to solve my HANK model. They argue that the dimension-reduced

model’s stability and determinacy may then be evaluated as in Blanchard and Kahn (1980):

a system has a unique solution if it has as many explosive (positive) eigenvalues as it has

jump variables. I solve my state space model using the QZ decomposition suggested by Sims

(2002) and consider its generalized eigenvalues.

In addition to the active fiscal, passive monetary HANK calibration explored in the main

paper, I consider the determinacy of a passive fiscal, passive monetary calibration as well. I

do this by setting the automatic debt repayment parameter of the HANK model to κ = 0.01.

Since this κ is double the steady-state real interest rate rnss = 0.005, debt converges back

to its steady-state values even in the absence of inflation, so the fiscal policy is indeed

“passive.” For both settings settings, I check the determinacy of my model in all three

ways. The Bayer and Luetticke (2020) results are straightforward; my dimension-reduced

system has as many explosive eigenvalues as it has forward-looking control variables. The

graphs of the criterion functions for both the Auclert et al. (2023a) and Hagedorn (2023)

methodologies are displayed in Figure B.7. None of the graphs encircle the origin.

All three different methodologies suggest that in each of my HANK calibrations, the

model exhibits local determinacy.
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Figure B.7: Onatski criterion for a sequence-space solution of a HANK model, both with the Auclert et al.
(2023a) determinacy criterion (top row) and the Hagedorn (2023) criterion (bottom row). Active fiscal,
passive monetary policy criterion plots are on the left, while the plots on the right depict a passive/passive
configuration. None of the criterion wind around the origin, implying that the model has a unique solution
under the different calibrations listed in Table ??. Arrows denote the direction of the graph around the
origin.

Appendix B.1. Brief Summary of Intuition Provided by Auclert et al. (2023a)

To briefly sketch the intuition of Onatski (2006)’s methodology, Auclert et al. (2023a)

note that Onatski (2006) essentially recommends taking determinant of the z-transformation

(discrete-time Laplace transformation) of the sequence of the model’s coefficients, a common

technique used in signal processing:

det Â(z) = det

[
∞∑

k=−∞

Akz
k

]

where z = eα+iω ∈ C is a point in the complex plane that describes both a sinusoidal

frequency and exponential magnitude. As noted in Auclert et al. (2023a), the contour

integral of the graph of det Â(z) evaluated over the unit circle |z| = 1 is known as the
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function’s winding number, as it counts the number of times the function wraps around the

origin counter-clockwise. They further denote the number of zeros of det Â(z) inside the unit

circle as N ; these are essentially stable roots. r predetermined variables affect the current

state in the z-transformation via a time shift of z−r; with the fundamental theory of algebra,

zr has r roots, such that the criterion function then has r stable poles. They then note that

via Cauchy’s argument principle,

wind det Â(z) =
1

2πi

∮
det Â(C)

dz

z
= N − r

If det Â(z) does not wrap around zero, then Z − P = 0 and the number of zeros in the

unit circle is equal to the number of poles, and the system admits a unique solution. As a

corollary, the number of stable roots is equal to the number of predetermined state variables,

matching the Blanchard and Kahn (1980) conditions for existence and determinacy.

Appendix B.2. Onatski (2006) and Partial Indexes

Onatski (2006) constructs his criterion using the Wiener-Hopf factorization of Â(λ) into

three components: an explosive root component Â+(λ), a stable component Â−(λ), and a

component that only pertains to the time shift of the coefficients (which can be accomplished

by multiplication or division of the z-transform by a factor of eλi) A0(λ). All together,

Â(λ) = Â−(λ)Â0(λ)Â+(λ)

He notes that the time shift component Â0(λ) is a diagonal matrix diag(eiλk1 , . . . ,iλkn ), where

n is the number of variables in xt and (k1, . . . , kn) are the number of periods each variable is

lagged time shift component of the factorization, known as the “partial indexes.” Onatski

(2006) calls a model “generic” if its winding numbers are all of the same sign or zero. Then,

a winding number of zero implies that all of the partial indexes of the model are zero as well.

From his paper, Proposition 1 then states that if the partial indexes are all i) equal to

zero, then the model solution exists and is unique, ii) weakly negative, with at least one

strictly negative, then the model is indeterminate, and iii) weakly positive, with at least one

strictly positive, then a solution does not exist. He then shows that, because the winding
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number of the root components is always zero and the time shift matrix containing the

partial indexes is diagonal,

wind det Â(λ) =wind(det[Â−(λ)] det[Â0(λ)] det[Â+(λ)]

=wind det[Â−(λ)] + wind det[Â0(λ) + wind det[Â+(λ)]

=wind det Â0(λ)

=wind exp

(
λi

T∑
j=1

kj

)
=

T∑
j=1

kj

The winding number is equal to the sum of partial indexes. Thus, if a model is generic, then

the winding number will only be equal to zero if the partial indexes are all zero, negative if

the partial indexes are all weakly negative, and positive if the partial indexes are all weakly

positive.
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Appendix C. HANK Model Derivations

Appendix C.1. Wage Phillips Curve

This is a continuous-time version of Auclert et al. (2024), The Intertemporal Keynesian

Cross. Say a labor-aggregator hires labor from households to create an aggregate unit of

input labor:

Lk,t =

∫ 1

0

(zihikt)di

And labor from each union is differentiated with elasticity of substitution εℓ:

Lt =

(∫ 1

0

L
εℓ−1

εℓ
k,t dk

) εℓ
εℓ−1

Let Wt be the nominal wage paid by employers to labor-aggregators, and let the labor-

aggregator pay its workers a nominal wage of Wk,t. Labor-aggregating firms thus hire ac-

cording to

max
{Lk,t}k∈[0,1]

Wt

(∫ 1

0

L
εℓ−1

εℓ
k,t dk

) εℓ
εℓ−1

−
∫ 1

0

Wk,tLk,tdk

such that from the FOCs, the demand for labor from union k is

Wt

(∫ 1

0

L
εℓ−1

εℓ
k,t dk

) εℓ
εℓ−1

−1

L
− 1

εℓ
k,t −Wk,t = 0

WtL
1
εℓ
t L

− 1
εℓ

k,t = Wk,t

WtL
1
εℓ
t = Wk,tL

1
εℓ
k,t

⇒ Lk,t

Lt

=

(
Wt

Wk,t

)εℓ

Unions face nominal wage adjustment costs:

θw
2

∫ 1

0

π2
w,kdk, where πw,k =

dWk,t

dt

1

Wk,t
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The labor union k sets wages to maximize its members’ lifetime utilities:

Jw
t (Wk,t) = max

πw
k,t

E0

∫ ∞

0

e−ρt

[∫ ∫ {
c(a, z)1−γ

1− γ
− h(a, z)1+

1
η

1 + 1
η

}
µt(a, z)da dz −

θw
2
(πw

k,t)
2

]
dt

s.t.
dWt

dt
= πw

t Wt

Lk,t =

∫ 1

0

zihiktdi

Lk,t

Lt

=

(
Wt

Wk,t

)εℓ

Where the third equation follows from the first-order conditions from the households.

The HJB is then (suppressing the value function’s arguments for brevity)

ρJw
t =

[∫ ∫ {
c(a, z;Wk,t)

1−γ

1− γ
− h(a, z;Wk,t)

1+ 1
η

1 + 1
η

}
µt(a, z)da dz −

θw
2
(πw

k,t)
2

]
+

∂Jw
t

∂Wk,t
πw
t Wk,t +

∂Jw
t

∂t

The FOC for wage inflation is then

−θwπw
k,t +

∂Jw(Wk,t)

∂Wk,t

Wk,t = 0

⇒ ∂Jw(Wk,t)

∂Wk,t

= θw
πw
k,t

Wk,t

Taking the total differential of the marginal value of wages,

d

(
∂Jw

t (Wk,t)

∂Wk,t

)
= ∂2Wk,t

Jw
t dWk,t + ∂Wk,t

∂tJ
w
t dt

and doing the same to the LHS of the wage inflation FOC,

d

(
θw

πw
t

Wk,t

)
=

θw
Wk,t

dπw
t − θwπ

w
t

W 2
k,t

dWk,t

I can equate the two:

θw
Wk,t

dπw
t − θwπ

w
t

W 2
k,t

dWk,t = ∂2Wk,t
JwdWk,t + ∂t∂Wk,t

Jw
t dt.
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Taking expectations and dividing by dt yields

θw
Wk,t

Et[dπ
w
t ]

dt
− θwπ

w
t

Wk,t

dWk,t

dt

1

Wk,t︸ ︷︷ ︸
πw
k,t

= ∂2Wk,t
Jw
t

dWk,t

dt
+ ∂Wk,t

∂tJ
w
t

such that
θw
Wk,t

Et[dπ
w
t ]

dt
− θwπ

w
t

Wk,t

πw
t = ∂2Wk,t

Jwπw
t Wtk + ∂Wk,t

∂tJ
w
t (C.1)

Next, the Envelope condition stipulates that

ρ∂Wk,t
Jw
t =

[∫ ∫
∂Wk,t

{
c(a, z;Wk,t)

1−γ

1− γ
− h(a, z;Wk,t)

1+ 1
η

1 + 1
η

}
µt(a, z)da dz

]
+ ∂2Wk,t

Jwπw
t Wk,t + ∂Wk,t

Jw(Wk,t)π
w
t + ∂Wk,t

∂tJ
w
t

Substituting in (C.1),

ρ∂Wk,t
Jw
t =

[∫ ∫
∂Wk,t

{
c(a, z;Wk,t)

1−γ

1− γ
− h(a, z;Wk,t)

1+ 1
η

1 + 1
η

}
µt(a, z)da dz

]

+ ∂Wk,t
Jw
t (Wk,t)π

w
t +

θw
Wk,t

Et[dπ
w
t ]

dt
− θwπ

w
t

Wk,t

πw
t

and then the FOC,

ρθw
πw
k,t

Wk,t

=

[∫ ∫
∂Wk,t

{
c(a, z;Wk,t)

1−γ

1− γ
− h(a, z;Wk,t)

1+ 1
η

1 + 1
η

}
µt(a, z)da dz

]

+ θw
πw
k,t

Wk,t

πw
t +

θw
Wk,t

Et[dπ
w
t ]

dt
− θwπ

w
t

Wk,t

πw
t

it follows that

ρπwk,t =
Wk,t

θw

[∫ ∫
∂Wk,t

{
c(a, z;Wk,t)

1−γ

1− γ
−
h(a, z;Wk,t)

1+ 1
η

1 + 1
η

}
µt(a, z)da dz

]
+

Et[dπ
w
t ]

dt
. (C.2)

From the households’ envelope condition, the change in utility from wages will be equal to

57



the marginal utility, times the change in earnings:

∂Wk,t

{
c(a, z;Wk,t)

1−γ

1− γ

}
= c(a, z)−γ(1− τ)∂Wk,t

(
z
Wk,t

Pt

h(a, z)

)

Where if households uniformly supply their labor to union k, and unions internalize their

labor’s demand:

hikt(a, z) =
1

Z
Lk,t =

1

Z

(
Wt

Wk,t

)εℓ

Lt

⇒ ∂Wk,t

{
c(a, z;Wk,t)

1−γ

1− γ

}
= c(a, z)−γ(1− τ)∂Wk,t

(
z
Wk,t

Pt

(
Wt

Wk,t

)εℓ 1

Z
Lt

)
=c(a, z)−γ(1− τ)(1− εℓ)

z

Z

1

Wk,t

(
Wk,t

Pt

(
Wt

Wk,t

)εℓ

Lt

)
=c(a, z)−γ(1− τ)(1− εℓ)

z

Z

1

Pt

Lk,t

For the effect of wages on labor disutility, I can directly evaluate

∂Wk,t
h(a, z) =

1

Z
∂Wk,t

(
Wt

Wk,t

)εℓ

Lt = −εℓ
1

Z

1

Wk,t

(
Wt

Wk,t

)εℓ

Lt = −εℓ
1

Z

Lk,t

Wk,t

Plugging in the results into (C.2),

ρπwk,t =
Wk,t

θw

[∫ ∫ {
c(a, z)−γ(1− τ)(1− εℓ)

z

Z

1

Pt
Lk,t +

1

Z
h(a, z)

1
η εℓ

Lk,t

Wk,t

}
µt(a, z)da dz

]
+
Et[dπ

w
t ]

dt

ρπw
k,t =

εℓ
θw

Lk,t

Z

∫ ∫ {
h(a, z)

1
η − εℓ − 1

εℓ
(1− τ)z

Wk,t

Pt

c(a, z)−γ

}
µt(a, z)da dz +

Et[dπ
w
t ]

dt

Leading to the wage Phillips Curve

Et[dπ
w
t ]

dt
= ρπw

t − εℓ
θw

Lt

Z

∫ ∫ (
h(a, z)

1
η − εℓ − 1

εℓ
(1− τ)zwtc(a, z)

−γ

)
µt(a, z) da dz (C.3)

where wt ≡ Wk,t

Pt
is the real wage in the symmetric equilibrium where Wk,t = Wt ∀k ∈ [0, 1].

Log-linearizing for a representative agent,

Et[dπ
w
t ]

dt
= ρπw

t − εℓ
θw

Yt
Z

[(
Yt
Z

) 1
η

− εℓ − 1

εℓ
(1− τ)ZwY −γ

t

]
(C.4)
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Et[dπ
w
t ]

dt
= ρπw

t − εℓ
θw

Y (1 + Ŷt)

Z

[(
Y

Z

) 1
η

(1 +
1

η
Ŷt)−

εℓ − 1

εℓ
(1− τ)ZwY −γ(1− γŶt)

]
(C.5)

Et[dπ
w
t ]

dt
= ρπw

t − εℓ
θw

Y (1 + Ŷt)

Z

[(
Y

Z

) 1
η 1

η
Ŷt +

εℓ − 1

εℓ
(1− τ)ZwγY −γŶt

]
(C.6)

Et[dπ
w
t ]

dt
= ρπw

t − εℓ
θw

Y

Z

[(
Y

Z

) 1
η 1

η
+ γ

εℓ − 1

εℓ
(1− τ)ZwY −γ

]
Ŷt (C.7)

Note that this implies a Phillips Curve slope of the NKPC with respect to output is roughly

0.275, given the proposed parameters. If the slope is measured as just the component that

relates to increases in marginal labor disutility, however, the slope is εℓ
θw

Yt

Z

(
Yt

Z

) 1
η = 0.07.
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Appendix D. Robustness

Appendix D.1. Present Value Sacrifice Ratios

Instead of the definitions presented in the main paper, one could instead construct sac-

rifice ratios that reflect the cumulative net present value of output gaps and inflation:

CY PV
t ≡

∫ t

0

e−rtŶsds

CπPV
t ≡

∫ t

0

e−rtπsds.

Here, r is the real interest rate in the non-stochastic steady-state. The alternative price level

sacrifice ratio is then

SRPV
t ≡ (CY PV

t /4)

CπPV
t

.

One could then examine how the present values of inflation and output evolve (from the

perspective of an individual at time 0) for the policies that send a 1% of GDP transfer to

different households. However, the resulting plot almost exactly matches Figure 3 in section

5.

Figure D.8: Present value cumulative output gaps, inflation, and price-level sacrifice ratios for 1% of GDP
fiscal transfers sent to low-income, high-income, and all households.

However, instead of the percentage difference between the eventual price level in the low-

income transfer scenario and the untargeted scenario being 5% of the latter, the percentage

difference shrinks to 3.8%.
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Appendix D.2. The Slope of the Phillips Curve

In the main parameterization, I set ε
θπ

= 0.10, where θπ = 100. Mapping this to a

discrete-time quarterly Calvo pricing model, if α is the percentage of unions that do not

adjust their prices,
(1− α)(1− αe−ρ)

α
= 0.10 ⇒ α = 0.74

such that roughly 26% of wage contracts reset every quarter and the average wage contract

resets in slightly under a year.

Below in Figure D.9, I plot the cumulative impulse responses in the active fiscal/passive

monetary regime under different parameterizations with different degrees of nominal rigidity.

The main calibration, θπ = 100, is plotted with a solid line. Decreasing θπ to 50 amounts to

lowering nominal rigidities and doubling the slope of the Phillips curve, while doubling it to

200 is tantamount to halving the curve’s slope.

Figure D.9: Cumulative impulse response of output and inflation with different degrees of nominal rigidity.
θπ = 100 is the baseline specification. Doubling θπ halves the slope of the Phillips curve.

More nominal rigidities (and a flatter Phillips Curve) amplify the output response and

smooth the path of inflation, while decreasing nominal rigidities does the converse. Even

so, the price level eventually settles to roughly the same value in each experiment and

parameterization. The ordering of the fiscal responses is also unchanged, even though their

magnitudes are altered.

The implied cumulative sacrifice ratios (cumulative output gaps as a percentage of annual

GDP divided by cumulative inflation) are plotted in Figure D.10. Lowering nominal rigidities
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Figure D.10: Price level sacrifice ratios by transfer type and nominal rigidity.

compresses the difference in sacrifice ratios across policies, while increasing them increases the

dispersion. Even so, the relative ordering between policies with the same parameterization

is unchanged. Sacrifice ratios are lower for GDP changes induced by reductions in transfers

to above-average income households, and are higher transfers to those with below-average

income are reduced.
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Appendix D.3. Firm Profits

In previous drafts of this paper, I included specifications where intermediate firms had a

constant markup of ε/(ε− 1), where profits were distributed proportionally to labor income

z. In my main specification, I set ε → ∞, effectively making the intermediate firm sector

perfectly competitive and removing firm profits from the model entirely.

In many HANK models, the distribution and cyclicality of firm profits can substantially

affect the simulated dynamics. However, the inclusion or exclusion of these profits has little

effect on my paper’s conclusions. I plot cumulative impulse response functions for the active

fiscal/passive monetary regime in Figure D.11, varying the elasticity of substitution of the

output of intermediate firms ε as I do so. ε = 7 corresponds to profits composing 14% of

national income, while ε = 20 reduces them to 5%. The main calibration of ε→ ∞ is plotted

with solid lines.

Figure D.11: Model solutions with different shares of profit income, 1/ε.

Since I use a sticky-wage model with perfectly flexible output prices, however, firm

markups are completely acyclic. Profit income thus only fluctuates due to changes in ag-

gregate output, which are small when multiplied by the profit share. This profit income is

further distributed proportionally to z to on-average wealthier agents with lower MPCs, so

its effect on the model dynamics is small even when the profit share is realistically calibrated.

As such, to avoid questions of the distribution of profits, I drop them from the model entirely.

63



Appendix E. Solving Bayer and Luetticke (2020) in Continuous Time

This section is best viewed after having already read Achdou et al. (2021), Ahn et al.

(2018), and particularly Bayer and Luetticke (2020) as background; the below section largely

amounts to a brief sketch of adapting Bayer and Luetticke (2020) to continuous time. For

notational brevity, I write the infinitessimal generator operator of the concentrated Hamilton

Jacobi Bellman equation as

D[V ] = lim
t↓0

Ea,z
t [Vt(at+dt, zt+dt)]− Vt(at, zt)

dt

=
∂Vt
∂a

(a, z)
qNSS

qt

[
(1− τ)wtzht(a, z) +Mt(zt; ζt)− c+

(
rt −

dqt
dt

1

qt

)
qt

qNSS

a

]
+
∂Vt
∂z

(a, z;µ, ζ)z

[
1

2
σ2
z − θz log(z)

]
where the expectation operator is taken with respect to only the idiosyncratic variables.

As in Achdou et al. (2021), I write the adjoint operator (which describes the Kolmogorov

forward equation of the idiosyncratic state distribution) as D∗, where the KFE operator is

the adjoint of the maximized HJB operator in L2 space. Additionally, I write expectation

errors for a jump variable “J” as dδJ,t, such that dδJ,t = dJt − Et[dJt].

Suppose aggregate shocks in the economy evolve according to

dζt = −Θζζtdt+ dϵζ,t. (E.1)

A sequential equilibrium following a perturbation from the steady state Wζ,0 is a result-

ing path of aggregate shocks {ζt}t≥0, a series of value functions {Vt(a, z)}t≥0, consumption

decisions and labor allocations {ct(a, z), ht(a, z)}t≥0, distributions {µt(a, z)}t≥0, outstanding

government debt {Bt}t≥0, wages {wt}t≥0, nominal and real interest rates {it, rt}t≥0, bond

prices {qt}t≥0, and inflation rates {πt}t≥0 where

dVt(a, z) =

{
ρVt(a, z)−

[
u(ct(a, z))− v(ht(a, z)) +D[V ]

]}
dt− ∂Vt(a, z)

∂a
dδqB,t + dδV (a,z),t

(E.2)

64



and if u(c) = c1−γ−1
1−γ

, it follows that the FOC for consumption is

ct(a, z)
−γ =

∂Vt
∂a

(a, z). (E.3)

The distribution evolves according to

dµt(a, z) = D∗[µ]dt (E.4)

while labor is supplied to meet market demand:

ht(a, z) =
Lt

Z
(E.5)

Inflation is equal to nominal wage inflation, which follows the labor market Phillips Curve

dπw
t =

{
ρπw

t − εℓ
θw
Lt

∫ ∫ (
v′(h(a, z))− εℓ − 1

εℓ
(1− τ)zwtu

′(c(a, z))

)
da dz

}
dt+ dδπw,t

(E.6)

Real wages are then constant:

wt = wNSS =
ε− 1

ε
(E.7)

where ε is the elasticity of substitution between goods in the output sector; the profit-free

version of the model sets ε→ ∞. The government’s budget constraint must satisfy

dBt = −(Tt −Gt)dt+ rtBtdt+
dδqB,t

qt
Bt (E.8)

where nominal bond prices and equity prices satisfy

dqt = qt

(
it + ω − ω

qt

)
dt+ dδq,t (E.9)

Equilibrium must also be consistent with the Fisher equation, the marginal cost equation,

and the profit equation:

rt = it − πt (E.10)

mt = wt (E.11)
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Πt = [1−mt]Yt (E.12)

All goods consumed must be produced:

Yt = Lt (E.13)

and the idiosyncratic variables must aggregate:

Ct =

∫ ∞

0

∫ ∞

a

ct(a, z)µt(a, z)da dz (E.14)

Lt =

∫ ∞

0

∫ ∞

a

zht(a, z)µt(a, z)da dz (E.15)

Finally, goods and financial markets must clear:

Yt = Ct (E.16)

Bt =

∫ ∞

0

∫ ∞

a

aµt(a, z)da dz (E.17)

I write the vector of forward-looking control variables as

XC,t = (Vt(a, z), πt, qt)
′,

the set of state variables as

X1,t = (µt(a, z), Bt, ζt)
′,

and the vector of static constraints as

XL,t = (Yt, Lt)
′,

(where many of the static constraints like the Fisher equation and the employment rules can

be re-written to solve out the other static variables from the model). Stacking the controls,

states, and static variables, I write

Xt = (XC,t, X1,t, XL,t)
′
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where dXt represents the differentials of Xt. Using this succinct notation, the entire system

(E.1-E.17) can be written as

Γ0dXt = Ω(Xt, dδX,t, dϵζ,t) (E.18)

where the rows of Γ0 corresponding to static constraints are equal to zero.

I discretize the partial differential equations on the computer in the non-stochastic steady

state where Xt = XNSS, dXt = 0, dδX,t = 0, and dϵζ,t = 0, using the finite-differences

methodology described in Achdou et al. (2021). This entails discretizing (E.18) via an

upwind finite difference approximation for the partial derivatives along an asset grid (which

I index by i ∈ I ≡ {1, . . . , Na}) and an income grid (which I index by j ∈ J ≡ {1 . . . , Nz}).

The tensor Vi,j,nss then approximates the value function VNSS(ai, zj) in the discretized state

space, while the tensor µi,j,nss approximates the distribution µNSS(ai, zj).

Before proceeding, I find it useful to define X̂t ≡ Xt−XNSS as either the level deviations

or the log deviations of the variables from their values in the non-stochastic steady state.

As such, the complete system can be rewritten to become

Γ0dX̂t = Ω̂(X̂t, dδX,t, dϵζ,t) (E.19)

where the arguments are the deviation terms. The steady state thus satisfies Ω̂(0) = 0. I then

proceed to solve for the dynamics of the economy following aggregate shocks. Practically,

the dimensionality of the discretized value functions and distributions necessitate dimension

reduction. However, for clarity, I first describe the process without dimension reduction.

Appendix E.1. Without Dimension Reduction

With the non-stochastic steady state (NSS) in hand, I then calculate the numerical

Jacobian of the system at the NSS using automatic differentiation. Differentiating the entire

system with respect to just the arguments in Xt alone, I can write the Jacobian of the system

with respect to its Xt variables at the non-stochastic steady state as

ΓX,X ≡ ∇XΩ̂(0)
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While the derivatives of the system with respect to the expectation errors and the pertur-

bations are

ΓX,δ ≡ ∇dδΩ(0)

ΓX,W ≡ ∇dWζ
Ω(0)

A first-order Taylor expansion of the system around the steady state without any shocks

(and where dX̂t = 0) is then

Γ0dX̂t = ΓX,XX̂tdt+ ΓX,δdδX,t + ΓX,Wdϵζ,t +O(∥X̂t, dδX,t, dϵζ,t∥2)

I then solve

Γ0dX̂t = ΓX,XX̂tdt+ ΓX,δdδX,t + ΓX,Wdϵζ,t (E.20)

using the generalized eigenvalue methodology described in Sims (2002). If the system has

more stable generalized eigenvalues than it has control variables, the dimensionality of the

linear subspace being used to approximate the system’s stable manifold is too large to ensure

that the dynamics are unique, such that multiple equilibria are possible (sunspots). If the

system has fewer stable eigenvalues than state variables, then the equilibrium cannot exist.

I verify that the number of stable eigenvalues in my system matches the number of state

variables, such that the solution exists and is unique.

While straightforward, this approach is too computationally costly to be feasible with

the number of gridpoints that I employ to solve my full model. As such, I use the dimension

reduction strategy of Bayer and Luetticke (2020) before calculating the Jacobian of (E.19).

Appendix E.2. With Dimension Reduction

I write the 2-dimensional discrete cosine transform (DCT) of a 2-dimensional array A

as θA = DCT(A), where its inverse DCT−1(θA) = A. I can write the transformation of the

value function in the non-stochastic steady state as

{θV(i,j),nss}(i,j)∈I×J = DCT({V(i,j),nss}(i,j)∈I×J)
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I then compute the “energy” (to use the terminology of Bayer and Luetticke (2020)) of the

θVi,j,nss coefficients as

Eij =
[θV(i,j),nss]

2∑
(i,j)∈I×J [θ

V
(i,j),nss]

2

Sorting the coefficients by their energy from greatest to least, I then identify those coefficients

that contain a cumulative 1− κ share of the coefficients’ energy, where κ is a small number.

I label the set of these coefficients (which are effectively the ones with the largest absolute

value) as ΘE; these coefficients explain most of the variation of the value function in the

steady state.

As in Bayer and Luetticke (2020), I then move toward constructing a perturbation solu-

tion of the equilibrium system, but perturbing only high-energy coefficients in ΘE. Other-

wise, I keep the lower-energy coefficients constant, at their steady state values:

θ̃Vi,j,t = θV(i,j),t + 1{(i,j)∈ΘE}θ̂
V
(i,j),t

where θ̂Vi,j,t is the coefficient’s deviation at time t from its NSS value.

The DCT is a linear operator. As such, I can write the differentials of the coefficients as

{dθV(i,j),t}(i,j)∈I×J = d
[
DCT({V(i,j),t}(i,j)∈I×J)

]
= {dθV(i,j),nss}(i,j)∈I×J =

[
DCT({dV(i,j),nss}(i,j)∈I×J)

]
and similarly I write

dθ̃V(i,j),t = 1{(i,j)∈ΘE}dθ
V
(i,j),t

By perturbing only the |ΘE| largest-magnitude coefficients instead of the full Na × Nz el-

ements of the discretized value function, I can greatly reduce the dimensionality of the

problem. Of course, this only reduces the number of control variables. To reduce the num-

ber of state variables in the distribution, I also employ the fixed copula transformation of

Bayer and Luetticke (2020).

I write the discretized joint cumulative distribution function Fµ(ai,zj), and the marginal

CDFs as Fµ(ai) and Fµ(zj). The copula is then the joint distribution interpolated onto the
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marginal ones:

Cop = Interp({Fµ(ai,zj),nss}ij, {Fµ(ai),nss}i, Fµ(zj),nss}j)

where the nss subscript denotes the steady state values. It then follows that Cop : [0, 1] ×

[0, 1] → [0, 1] maps cumulative marginal distributions to a joint distribution, as predicted by

the rank correlations of the steady state. Outside of the steady state, I then approximate

the joint cumulative distribution Fµ(ai,zj),t at time t as

Fµ(ai,zj),t ≈ Cop(Fµ(ai),t, Fµ(zj),t),

from which the marginal joint density function µij may be derived. Using this object, I can

then iterate the Kolmogorov Forward Equation to obtain dµij, which can be integrated (or

summed, since the functions are discretized) to obtain the evolution of the differentials

{(dFµ(ai),t, dFµ(zj),t)}ij.

As Bayer and Luetticke (2020) note, this approximation allows me to track only the Na and

Nz dimensional marginal CDFs instead of their joint one to describe the economy, so long

as the rank correlations outside of the steady state are similar to those represented in the

steady state (which Bayer and Luetticke (2020) show is generally the case in Bewley-Aiyagari

models).

I then define the dimension-reduced set of controls as

X̃C,t = ({θ̃Vi,j,t}(i,j)∈ΘE
, πt, π

w
t , qt)

′

and the dimension-reduced set of states as

X̃1,t = ({Fµ(ai),t}i, {Fµ(zj),t}j, Bt, wt, ζt)
′,

Once again stacking the reduced controls, states, and static variables, I write

X̃t = (X̃C,t, X̃1,t, XL,t)
′
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and the system (E.18) is approximated by a smaller one:

Γ̃0dX̃t = Ω̃(X̃t, dδX,t, dϵζ,t)

where Ω̃ calculates the value function and joint distribution given the DCT coefficients and

the marginal distribution, feeds them back into the original Ω function, and then from there

recovers the resulting truncated DCT coefficients and marginal CDFs’ time differentials.

Just like before, this system can also be written in terms of just the differences (or log

differences) of the variables from their non-stochastic steady state values. The rest of the

linearization steps and solution methods then proceed exactly in the same manner as they

do in the version without dimension reduction, as reviewed in the prior subsection of this

appendix.

I solve the model over a uniform grid of Na = 100 points spaced nonlinearly from 0 to

60, with more grid points at the bottom of the asset distribution. I use Nz = 50 grid points

from 0.01 to 5.5.
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